|
--- |
|
license: apache-2.0 |
|
tags: |
|
- speech-recognition |
|
- librispeech_asr |
|
- generated_from_trainer |
|
model-index: |
|
- name: hubert-librispeech-clean-100h-demo-dist |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# hubert-librispeech-clean-100h-demo-dist |
|
|
|
This model is a fine-tuned version of [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) on the LIBRISPEECH_ASR - CLEAN dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0984 |
|
- Wer: 0.0883 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- total_train_batch_size: 32 |
|
- total_eval_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 3.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 2.9031 | 0.11 | 100 | 2.9220 | 1.0 | |
|
| 2.6437 | 0.22 | 200 | 2.6268 | 1.0 | |
|
| 0.3934 | 0.34 | 300 | 0.4860 | 0.4182 | |
|
| 0.3531 | 0.45 | 400 | 0.3088 | 0.2894 | |
|
| 0.2255 | 0.56 | 500 | 0.2568 | 0.2426 | |
|
| 0.3379 | 0.67 | 600 | 0.2073 | 0.2011 | |
|
| 0.2419 | 0.78 | 700 | 0.1849 | 0.1838 | |
|
| 0.2128 | 0.9 | 800 | 0.1662 | 0.1690 | |
|
| 0.1341 | 1.01 | 900 | 0.1600 | 0.1541 | |
|
| 0.0946 | 1.12 | 1000 | 0.1431 | 0.1404 | |
|
| 0.1643 | 1.23 | 1100 | 0.1373 | 0.1304 | |
|
| 0.0663 | 1.35 | 1200 | 0.1293 | 0.1307 | |
|
| 0.162 | 1.46 | 1300 | 0.1247 | 0.1266 | |
|
| 0.1433 | 1.57 | 1400 | 0.1246 | 0.1262 | |
|
| 0.1581 | 1.68 | 1500 | 0.1219 | 0.1154 | |
|
| 0.1036 | 1.79 | 1600 | 0.1127 | 0.1081 | |
|
| 0.1352 | 1.91 | 1700 | 0.1087 | 0.1040 | |
|
| 0.0471 | 2.02 | 1800 | 0.1085 | 0.1005 | |
|
| 0.0945 | 2.13 | 1900 | 0.1066 | 0.0973 | |
|
| 0.0843 | 2.24 | 2000 | 0.1102 | 0.0964 | |
|
| 0.0774 | 2.35 | 2100 | 0.1079 | 0.0940 | |
|
| 0.0952 | 2.47 | 2200 | 0.1056 | 0.0927 | |
|
| 0.0635 | 2.58 | 2300 | 0.1026 | 0.0920 | |
|
| 0.0665 | 2.69 | 2400 | 0.1012 | 0.0905 | |
|
| 0.034 | 2.8 | 2500 | 0.1009 | 0.0900 | |
|
| 0.0251 | 2.91 | 2600 | 0.0993 | 0.0883 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.11.0.dev0 |
|
- Pytorch 1.9.0+cu111 |
|
- Datasets 1.12.1 |
|
- Tokenizers 0.10.3 |
|
|