font-identifier / README.md
patrickhul's picture
Model save
a612380 verified
metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/resnet-18
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: font-identifier
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9454545454545454

font-identifier

This model is a fine-tuned version of microsoft/resnet-18 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1706
  • Accuracy: 0.9455

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.2323 1.0 14 3.1711 0.05
3.1019 2.0 28 2.9173 0.1227
2.779 3.0 42 2.5695 0.2409
2.5 4.0 56 2.1142 0.4091
1.8064 5.0 70 1.6804 0.4864
1.575 6.0 84 1.2757 0.5773
1.348 7.0 98 1.0973 0.6864
1.0483 8.0 112 0.8965 0.7273
0.9753 9.0 126 0.7025 0.7682
0.7763 10.0 140 0.6220 0.8091
0.7392 11.0 154 0.5169 0.8636
0.7077 12.0 168 0.4815 0.8682
0.5433 13.0 182 0.4650 0.8455
0.565 14.0 196 0.3828 0.8773
0.4204 15.0 210 0.3493 0.8864
0.4798 16.0 224 0.2847 0.9045
0.4353 17.0 238 0.3370 0.8773
0.3871 18.0 252 0.2797 0.9045
0.3779 19.0 266 0.2671 0.9045
0.3819 20.0 280 0.2575 0.9
0.3216 21.0 294 0.2516 0.9227
0.3461 22.0 308 0.2368 0.9045
0.3116 23.0 322 0.2651 0.9136
0.3244 24.0 336 0.2820 0.9
0.2725 25.0 350 0.2320 0.9045
0.3377 26.0 364 0.2309 0.9318
0.2556 27.0 378 0.2361 0.9136
0.2654 28.0 392 0.1988 0.9364
0.2578 29.0 406 0.2322 0.9227
0.2262 30.0 420 0.1686 0.9409
0.2298 31.0 434 0.2148 0.9091
0.2259 32.0 448 0.1982 0.9318
0.2155 33.0 462 0.2340 0.9227
0.213 34.0 476 0.1359 0.9545
0.1812 35.0 490 0.1522 0.9409
0.1793 36.0 504 0.1553 0.9409
0.2391 37.0 518 0.1149 0.9636
0.1755 38.0 532 0.1627 0.9273
0.1907 39.0 546 0.1555 0.95
0.1814 40.0 560 0.1832 0.9409
0.1879 41.0 574 0.2046 0.9318
0.1953 42.0 588 0.1722 0.9364
0.1814 43.0 602 0.2270 0.9455
0.1932 44.0 616 0.1651 0.9318
0.1813 45.0 630 0.1752 0.9318
0.1691 46.0 644 0.1681 0.9636
0.1396 47.0 658 0.1604 0.9545
0.1647 48.0 672 0.1575 0.95
0.1501 49.0 686 0.1360 0.9545
0.1534 50.0 700 0.1706 0.9455

Framework versions

  • Transformers 4.54.1
  • Pytorch 2.7.1
  • Datasets 4.0.0
  • Tokenizers 0.21.4