File size: 1,843 Bytes
01a8851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
datasets:
- wmt20_mlqe_task1
model-index:
- name: xlmr-en-zh-no_shuffled-orig-test1000
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlmr-en-zh-no_shuffled-orig-test1000

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the wmt20_mlqe_task1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5862
- R Squared: -0.1664
- Mae: 0.5991
- Pearson R: 0.4148

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | R Squared | Mae    | Pearson R |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---------:|
| No log        | 1.0   | 438  | 0.4458          | 0.1130    | 0.5377 | 0.3977    |
| 0.7823        | 2.0   | 876  | 0.4252          | 0.1539    | 0.5123 | 0.4517    |
| 0.6317        | 3.0   | 1314 | 0.4948          | 0.0155    | 0.5423 | 0.4304    |
| 0.4449        | 4.0   | 1752 | 0.5149          | -0.0245   | 0.5577 | 0.4247    |
| 0.3139        | 5.0   | 2190 | 0.5862          | -0.1664   | 0.5991 | 0.4148    |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.0.1+cu117
- Datasets 2.14.6
- Tokenizers 0.14.1