File size: 13,762 Bytes
d2323e4
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d8d79ec2a70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d8d79ec2b00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d8d79ec2b90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d8d79ec2c20>", "_build": "<function ActorCriticPolicy._build at 0x7d8d79ec2cb0>", "forward": "<function ActorCriticPolicy.forward at 0x7d8d79ec2d40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d8d79ec2dd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d8d79ec2e60>", "_predict": "<function ActorCriticPolicy._predict at 0x7d8d79ec2ef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d8d79ec2f80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d8d79ec3010>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d8d79ec30a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d8d836e7980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696121504325446747, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHOTf76mGIo/kyhXvp4i4L6sJIW+W4U8vAAAAAAAAAAAIPRKPpDyoz+qDNs+V9/2vhGhkT4CNJk9AAAAAAAAAAAACsQ8cY83PJBjdj32x52+UJZivfYYAj4AAAAAAAAAADNf3Lt7Gqq6aQ+3uqb0qrUxkS+6whzSOQAAgD8AAIA/mp2Qu6RgWbmre3U6AJ1VNRfSAjpWZ4+5AACAPwAAgD+aJtA84ZSbuph/jDjt5j8zCHu0uIbkoLcAAIA/AACAP2Y2rTwpwAi6UL3iNm02KjKofFq6IgAItgAAgD8AAIA/mhM5PFyjeroqkBi4xogVs5O6lTrFejI3AACAPwAAgD/NZL679nxcum8iJbpiEBu1yoEiuhZjQjkAAIA/AACAPwAAhTwUaLG6ViH0NlHJ7TFPqUw68ucMtgAAgD8AAIA/AB8MvUgvlLodwbE7F6teOJ/Xqbrqww24AACAPwAAgD8A8HG74aaYuvwIIDrUH3Q2HcENu2EsN7kAAIA/AACAP2Z2YT32QAu6IhYrvBrhLrP/TCW7Ko5GMwAAAAAAAIA/zRdKvfZwC7pMmjW0zD1FrzVMgzvq8JszAACAPwAAgD/mxW09XKtyupLKHrhk3Q2zgX+UurvgOTcAAIA/AACAPwCN/zzaJKw/TU+/Phvw4L4xuHI86lAAPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGHYX0PH1e2MAWyUTegDjAF0lEdAlQrNXT3IuHV9lChoBkdAYqxySV4X42gHTegDaAhHQJUOwEyLyc11fZQoaAZHQGf7hDG96C1oB03oA2gIR0CVFrNO/L1VdX2UKGgGR0BkQLdnCfpVaAdN6ANoCEdAlRixx5s0pHV9lChoBkdAYPlORkmQbWgHTegDaAhHQJUcT/Khcqx1fZQoaAZHQF78vTw2ETRoB03oA2gIR0CVH+ZsbedkdX2UKGgGR0BkXV6AvtdBaAdN6ANoCEdAlSEluWKMvXV9lChoBkdAZSigkka/AWgHTegDaAhHQJUiOh6By0d1fZQoaAZHQFW/g1m8M/hoB0uqaAhHQJUi/ihnJ1d1fZQoaAZHQGTTkehf0EpoB03oA2gIR0CVJCvxYq5LdX2UKGgGR0BlMbkMkQf7aAdN6ANoCEdAlSeErK/203V9lChoBkdAY1gcwQDmsGgHTegDaAhHQJUtFWvKU3Z1fZQoaAZHQGAt9rO7g89oB03oA2gIR0CVLYAv+OwQdX2UKGgGR0Bl+uMyad+YaAdN6ANoCEdAlUF1tO2y9nV9lChoBkdAZ33tVrAP/mgHTegDaAhHQJVGXH/95yF1fZQoaAZHQGFVWVE/jbVoB03oA2gIR0CVSZAqur6tdX2UKGgGR0Bg/HvjOs1baAdN6ANoCEdAlU4fCZWq+HV9lChoBkdAZXdQSi/O+2gHTegDaAhHQJVOyr8zhxZ1fZQoaAZHQGGDmnwXqJNoB03oA2gIR0CVUT/Ot4iYdX2UKGgGR0BohbmuDBdlaAdN6ANoCEdAlVi2i+L3sXV9lChoBkdAZGDufmLcbmgHTegDaAhHQJVeB4QjD9B1fZQoaAZHQGKIvnKW9lFoB03oA2gIR0CVYXbAUL2IdX2UKGgGR0BmvI7T2FnJaAdN6ANoCEdAlWKqiCaqj3V9lChoBkdAYiITi83+/GgHTegDaAhHQJVjqUaAFxJ1fZQoaAZHQGZcPM8ox59oB03oA2gIR0CVZHkT6BRRdX2UKGgGR0BkWslb/wRXaAdN6ANoCEdAlWWRr30wrXV9lChoBkdAZO6/TLGJemgHTegDaAhHQJVopvegte51fZQoaAZHQGbnuwgTyrhoB03oA2gIR0CVbfYOlO45dX2UKGgGR0Bl3tmFrVOLaAdN6ANoCEdAlW5g0fozN3V9lChoBkdAcPET7VJ+UmgHTV8BaAhHQJW11m/WUbF1fZQoaAZHQG8/VTJhfBxoB00+A2gIR0CVt6a6STyKdX2UKGgGR0BoxvrB0p3HaAdN6ANoCEdAlb5UNFz+33V9lChoBkdAZiCqWC2+f2gHTegDaAhHQJXDQT7EYO51fZQoaAZHQGOLHeJpFkRoB03oA2gIR0CVy5M36yjYdX2UKGgGR0Bh3u0NSZSfaAdN6ANoCEdAlcxbiZOSGXV9lChoBkdAZZ1m8ujASGgHTegDaAhHQJXPRQ0oBq91fZQoaAZHQHIIT1K5CnhoB03HAmgIR0CV1ve5Fw1jdX2UKGgGR0Bme5XuE25yaAdN6ANoCEdAlddEzbeuWHV9lChoBkdAYrjY287IUGgHTegDaAhHQJXck3dbgTB1fZQoaAZHQGWGKYRdyDJoB03oA2gIR0CV3+7zkIX1dX2UKGgGR0BmQfrIHTqjaAdN6ANoCEdAleEPEGZ/kXV9lChoBkdAYT3S75Ec82gHTegDaAhHQJXiD9zfaYh1fZQoaAZHQGTBJr+HaexoB03oA2gIR0CV5BUo8ZDRdX2UKGgGR0Bk756QeV9naAdN6ANoCEdAle0xoIv8InV9lChoBkdAYxMQDFId2mgHTegDaAhHQJXtojv/io91fZQoaAZHQHCThnanJkpoB03FA2gIR0CV9pNB4UvgdX2UKGgGR0BiY269TP0JaAdN6ANoCEdAlftkFOfukXV9lChoBkdAZ1Oxgy/KyWgHTegDaAhHQJYCCOdXko51fZQoaAZHQGPvnyEtdzJoB03oA2gIR0CWBk15Sm65dX2UKGgGR0BiQ9UhmoR7aAdN6ANoCEdAlgzN4u9OAXV9lChoBkdAYX44uK4x12gHTegDaAhHQJYNbV6NVBF1fZQoaAZHQGPlp8OTaCdoB03oA2gIR0CWD/GmDUVjdX2UKGgGR0BiRhjSXt0FaAdN6ANoCEdAlhd1ymygPHV9lChoBkdAZQH86V+qi2gHTegDaAhHQJYXv1pTMq11fZQoaAZHQGNcb9qDbrVoB03oA2gIR0CWHT+9rXUZdX2UKGgGR0BjrCeVcD8taAdN6ANoCEdAliDhM36yjnV9lChoBkdAZqaKv3ai9WgHTegDaAhHQJYh+wbEP2B1fZQoaAZHQGUn1GCqZMNoB03oA2gIR0CWIvK7ZnL8dX2UKGgGR0BoN3MGHHmzaAdN6ANoCEdAliTu9vjwQXV9lChoBkdAYllt5UtI1GgHTegDaAhHQJYttbD/EO11fZQoaAZHQGdki3w1BMVoB03oA2gIR0CWLiVObiIddX2UKGgGR0BksHt4RmK7aAdN6ANoCEdAlmxFd1MdtHV9lChoBkdAblNuMuOCG2gHTSgCaAhHQJZuOXt0FKV1fZQoaAZHQGTpnGS6lLxoB03oA2gIR0CWb6OPvKEGdX2UKGgGR0BQboikfs/qaAdLxWgIR0CWcCt8eCCjdX2UKGgGR0BvzzcZccENaAdNqwNoCEdAlnCbiVB2OnV9lChoBkdAYl003Ov+wWgHTegDaAhHQJZ5W925hBt1fZQoaAZHQG+BECV8kUtoB00oAmgIR0CWfzP9UCJXdX2UKGgGR0BmDZzHS4OMaAdN6ANoCEdAloEco2GZeHV9lChoBkdAY6NxqfvnbWgHTegDaAhHQJaCBt+Csfd1fZQoaAZHQHGcPWcz68BoB02YAmgIR0CWgi0Syt3fdX2UKGgGR0BwXSWt2cJ/aAdN3AJoCEdAloLU7KaG6HV9lChoBkdAYSahr30wrWgHTegDaAhHQJaFjs0HhS91fZQoaAZHQHDzuHN5dGBoB00cA2gIR0CWi2KXfIjodX2UKGgGR0Bj8zjo6jnFaAdN6ANoCEdAlozHMyJsPHV9lChoBkdAcKCi2lVLjGgHTToBaAhHQJaTHULDye91fZQoaAZHQHQwYgmqo61oB01QAWgIR0CWlQe0G/vfdX2UKGgGR0Bl9/W+XZ5BaAdN6ANoCEdAlpdHNHH3lHV9lChoBkdAcNj9nK4hEGgHTbECaAhHQJablX5nDix1fZQoaAZHQHGsQqqfe1toB01lAWgIR0CWoIxEv0yydX2UKGgGR0Bnl9QIldC3aAdN6ANoCEdAlqIz5GjKxXV9lChoBkdAck/AdGRV62gHTY0DaAhHQJapShzvJBB1fZQoaAZHQGMe4RmK64FoB03oA2gIR0CWqjq4YrJ9dX2UKGgGR0BlwpOYYzi0aAdN6ANoCEdAlqxBeC04R3V9lChoBkdAZxte7cwg1WgHTegDaAhHQJauLpaA4GV1fZQoaAZHQGLG0uUUwi9oB03oA2gIR0CWtv0VafSQdX2UKGgGR0Bmg9w71ZkkaAdN6ANoCEdAlryVpPAO8XV9lChoBkdAYJwtf5ULlWgHTegDaAhHQJa/jqVyFPB1fZQoaAZHQGW8MF2V3UxoB03oA2gIR0CWwDarmyPddX2UKGgGR0BoI5LmITGpaAdN6ANoCEdAlsL9x2jfvXV9lChoBkdAZ901IAfdRGgHTegDaAhHQJbJoXwb2lF1fZQoaAZHQG8IXmNipehoB02GA2gIR0CW0BzXz19OdX2UKGgGR0Bj2IoNNJvpaAdN6ANoCEdAltFN1QqI8HV9lChoBkdAY6BQID5j6WgHTegDaAhHQJbTB35eqrB1fZQoaAZHQHC/tUn5SFZoB01SA2gIR0CW1cnUUfxMdX2UKGgGR0BkMeyPdVNpaAdN6ANoCEdAltkXuVopQXV9lChoBkdAZToOcUdq+WgHTegDaAhHQJbfBKVY6n11fZQoaAZHQGW4LncL0BhoB03oA2gIR0CW5WCEHt4SdX2UKGgGR0BkEEFMZgogaAdN6ANoCEdAluZBFVktmXV9lChoBkdAYF2VII4VAWgHTegDaAhHQJbn+x9oexR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1240, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 512, "n_epochs": 40, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}