pascalhuerten commited on
Commit
4dfd5a6
·
verified ·
1 Parent(s): d71e600

Remove evaluation results

Browse files
Files changed (1) hide show
  1. README.md +4 -2496
README.md CHANGED
@@ -24,2505 +24,13 @@ tags:
24
  - fever
25
  - hotpot_qa
26
  - mteb
27
- language: en
 
 
28
  inference: false
29
  license: apache-2.0
30
- model-index:
31
- - name: final_base_results
32
- results:
33
- - task:
34
- type: Classification
35
- dataset:
36
- type: mteb/amazon_counterfactual
37
- name: MTEB AmazonCounterfactualClassification (en)
38
- config: en
39
- split: test
40
- revision: e8379541af4e31359cca9fbcf4b00f2671dba205
41
- metrics:
42
- - type: accuracy
43
- value: 86.2089552238806
44
- - type: ap
45
- value: 55.76273850794966
46
- - type: f1
47
- value: 81.26104211414781
48
- - task:
49
- type: Classification
50
- dataset:
51
- type: mteb/amazon_polarity
52
- name: MTEB AmazonPolarityClassification
53
- config: default
54
- split: test
55
- revision: e2d317d38cd51312af73b3d32a06d1a08b442046
56
- metrics:
57
- - type: accuracy
58
- value: 88.35995000000001
59
- - type: ap
60
- value: 84.18839957309655
61
- - type: f1
62
- value: 88.317619250081
63
- - task:
64
- type: Classification
65
- dataset:
66
- type: mteb/amazon_reviews_multi
67
- name: MTEB AmazonReviewsClassification (en)
68
- config: en
69
- split: test
70
- revision: 1399c76144fd37290681b995c656ef9b2e06e26d
71
- metrics:
72
- - type: accuracy
73
- value: 44.64
74
- - type: f1
75
- value: 42.48663956478136
76
- - task:
77
- type: Retrieval
78
- dataset:
79
- type: arguana
80
- name: MTEB ArguAna
81
- config: default
82
- split: test
83
- revision: None
84
- metrics:
85
- - type: map_at_1
86
- value: 27.383000000000003
87
- - type: map_at_10
88
- value: 43.024
89
- - type: map_at_100
90
- value: 44.023
91
- - type: map_at_1000
92
- value: 44.025999999999996
93
- - type: map_at_3
94
- value: 37.684
95
- - type: map_at_5
96
- value: 40.884
97
- - type: mrr_at_1
98
- value: 28.094
99
- - type: mrr_at_10
100
- value: 43.315
101
- - type: mrr_at_100
102
- value: 44.313
103
- - type: mrr_at_1000
104
- value: 44.317
105
- - type: mrr_at_3
106
- value: 37.862
107
- - type: mrr_at_5
108
- value: 41.155
109
- - type: ndcg_at_1
110
- value: 27.383000000000003
111
- - type: ndcg_at_10
112
- value: 52.032000000000004
113
- - type: ndcg_at_100
114
- value: 56.19499999999999
115
- - type: ndcg_at_1000
116
- value: 56.272
117
- - type: ndcg_at_3
118
- value: 41.166000000000004
119
- - type: ndcg_at_5
120
- value: 46.92
121
- - type: precision_at_1
122
- value: 27.383000000000003
123
- - type: precision_at_10
124
- value: 8.087
125
- - type: precision_at_100
126
- value: 0.989
127
- - type: precision_at_1000
128
- value: 0.099
129
- - type: precision_at_3
130
- value: 17.093
131
- - type: precision_at_5
132
- value: 13.044
133
- - type: recall_at_1
134
- value: 27.383000000000003
135
- - type: recall_at_10
136
- value: 80.868
137
- - type: recall_at_100
138
- value: 98.86200000000001
139
- - type: recall_at_1000
140
- value: 99.431
141
- - type: recall_at_3
142
- value: 51.28
143
- - type: recall_at_5
144
- value: 65.22
145
- - task:
146
- type: Clustering
147
- dataset:
148
- type: mteb/arxiv-clustering-p2p
149
- name: MTEB ArxivClusteringP2P
150
- config: default
151
- split: test
152
- revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
153
- metrics:
154
- - type: v_measure
155
- value: 39.68441054431849
156
- - task:
157
- type: Clustering
158
- dataset:
159
- type: mteb/arxiv-clustering-s2s
160
- name: MTEB ArxivClusteringS2S
161
- config: default
162
- split: test
163
- revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
164
- metrics:
165
- - type: v_measure
166
- value: 29.188539728343844
167
- - task:
168
- type: Reranking
169
- dataset:
170
- type: mteb/askubuntudupquestions-reranking
171
- name: MTEB AskUbuntuDupQuestions
172
- config: default
173
- split: test
174
- revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
175
- metrics:
176
- - type: map
177
- value: 63.173362687519784
178
- - type: mrr
179
- value: 76.18860748362133
180
- - task:
181
- type: STS
182
- dataset:
183
- type: mteb/biosses-sts
184
- name: MTEB BIOSSES
185
- config: default
186
- split: test
187
- revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
188
- metrics:
189
- - type: cos_sim_spearman
190
- value: 82.30789953771232
191
- - task:
192
- type: Classification
193
- dataset:
194
- type: mteb/banking77
195
- name: MTEB Banking77Classification
196
- config: default
197
- split: test
198
- revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
199
- metrics:
200
- - type: accuracy
201
- value: 77.03571428571428
202
- - type: f1
203
- value: 75.87384305045917
204
- - task:
205
- type: Clustering
206
- dataset:
207
- type: mteb/biorxiv-clustering-p2p
208
- name: MTEB BiorxivClusteringP2P
209
- config: default
210
- split: test
211
- revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
212
- metrics:
213
- - type: v_measure
214
- value: 32.98041170516364
215
- - task:
216
- type: Clustering
217
- dataset:
218
- type: mteb/biorxiv-clustering-s2s
219
- name: MTEB BiorxivClusteringS2S
220
- config: default
221
- split: test
222
- revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
223
- metrics:
224
- - type: v_measure
225
- value: 25.71652988451154
226
- - task:
227
- type: Retrieval
228
- dataset:
229
- type: BeIR/cqadupstack
230
- name: MTEB CQADupstackAndroidRetrieval
231
- config: default
232
- split: test
233
- revision: None
234
- metrics:
235
- - type: map_at_1
236
- value: 33.739999999999995
237
- - type: map_at_10
238
- value: 46.197
239
- - type: map_at_100
240
- value: 47.814
241
- - type: map_at_1000
242
- value: 47.934
243
- - type: map_at_3
244
- value: 43.091
245
- - type: map_at_5
246
- value: 44.81
247
- - type: mrr_at_1
248
- value: 41.059
249
- - type: mrr_at_10
250
- value: 52.292
251
- - type: mrr_at_100
252
- value: 52.978
253
- - type: mrr_at_1000
254
- value: 53.015
255
- - type: mrr_at_3
256
- value: 49.976
257
- - type: mrr_at_5
258
- value: 51.449999999999996
259
- - type: ndcg_at_1
260
- value: 41.059
261
- - type: ndcg_at_10
262
- value: 52.608
263
- - type: ndcg_at_100
264
- value: 57.965
265
- - type: ndcg_at_1000
266
- value: 59.775999999999996
267
- - type: ndcg_at_3
268
- value: 48.473
269
- - type: ndcg_at_5
270
- value: 50.407999999999994
271
- - type: precision_at_1
272
- value: 41.059
273
- - type: precision_at_10
274
- value: 9.943
275
- - type: precision_at_100
276
- value: 1.6070000000000002
277
- - type: precision_at_1000
278
- value: 0.20500000000000002
279
- - type: precision_at_3
280
- value: 23.413999999999998
281
- - type: precision_at_5
282
- value: 16.481
283
- - type: recall_at_1
284
- value: 33.739999999999995
285
- - type: recall_at_10
286
- value: 63.888999999999996
287
- - type: recall_at_100
288
- value: 85.832
289
- - type: recall_at_1000
290
- value: 97.475
291
- - type: recall_at_3
292
- value: 51.953
293
- - type: recall_at_5
294
- value: 57.498000000000005
295
- - task:
296
- type: Retrieval
297
- dataset:
298
- type: BeIR/cqadupstack
299
- name: MTEB CQADupstackEnglishRetrieval
300
- config: default
301
- split: test
302
- revision: None
303
- metrics:
304
- - type: map_at_1
305
- value: 31.169999999999998
306
- - type: map_at_10
307
- value: 41.455
308
- - type: map_at_100
309
- value: 42.716
310
- - type: map_at_1000
311
- value: 42.847
312
- - type: map_at_3
313
- value: 38.568999999999996
314
- - type: map_at_5
315
- value: 40.099000000000004
316
- - type: mrr_at_1
317
- value: 39.427
318
- - type: mrr_at_10
319
- value: 47.818
320
- - type: mrr_at_100
321
- value: 48.519
322
- - type: mrr_at_1000
323
- value: 48.558
324
- - type: mrr_at_3
325
- value: 45.86
326
- - type: mrr_at_5
327
- value: 46.936
328
- - type: ndcg_at_1
329
- value: 39.427
330
- - type: ndcg_at_10
331
- value: 47.181
332
- - type: ndcg_at_100
333
- value: 51.737
334
- - type: ndcg_at_1000
335
- value: 53.74
336
- - type: ndcg_at_3
337
- value: 43.261
338
- - type: ndcg_at_5
339
- value: 44.891
340
- - type: precision_at_1
341
- value: 39.427
342
- - type: precision_at_10
343
- value: 8.847
344
- - type: precision_at_100
345
- value: 1.425
346
- - type: precision_at_1000
347
- value: 0.189
348
- - type: precision_at_3
349
- value: 20.785999999999998
350
- - type: precision_at_5
351
- value: 14.560999999999998
352
- - type: recall_at_1
353
- value: 31.169999999999998
354
- - type: recall_at_10
355
- value: 56.971000000000004
356
- - type: recall_at_100
357
- value: 76.31400000000001
358
- - type: recall_at_1000
359
- value: 88.93900000000001
360
- - type: recall_at_3
361
- value: 45.208
362
- - type: recall_at_5
363
- value: 49.923
364
- - task:
365
- type: Retrieval
366
- dataset:
367
- type: BeIR/cqadupstack
368
- name: MTEB CQADupstackGamingRetrieval
369
- config: default
370
- split: test
371
- revision: None
372
- metrics:
373
- - type: map_at_1
374
- value: 39.682
375
- - type: map_at_10
376
- value: 52.766000000000005
377
- - type: map_at_100
378
- value: 53.84100000000001
379
- - type: map_at_1000
380
- value: 53.898
381
- - type: map_at_3
382
- value: 49.291000000000004
383
- - type: map_at_5
384
- value: 51.365
385
- - type: mrr_at_1
386
- value: 45.266
387
- - type: mrr_at_10
388
- value: 56.093
389
- - type: mrr_at_100
390
- value: 56.763
391
- - type: mrr_at_1000
392
- value: 56.793000000000006
393
- - type: mrr_at_3
394
- value: 53.668000000000006
395
- - type: mrr_at_5
396
- value: 55.1
397
- - type: ndcg_at_1
398
- value: 45.266
399
- - type: ndcg_at_10
400
- value: 58.836
401
- - type: ndcg_at_100
402
- value: 62.863
403
- - type: ndcg_at_1000
404
- value: 63.912
405
- - type: ndcg_at_3
406
- value: 53.19199999999999
407
- - type: ndcg_at_5
408
- value: 56.125
409
- - type: precision_at_1
410
- value: 45.266
411
- - type: precision_at_10
412
- value: 9.492
413
- - type: precision_at_100
414
- value: 1.236
415
- - type: precision_at_1000
416
- value: 0.13699999999999998
417
- - type: precision_at_3
418
- value: 23.762
419
- - type: precision_at_5
420
- value: 16.414
421
- - type: recall_at_1
422
- value: 39.682
423
- - type: recall_at_10
424
- value: 73.233
425
- - type: recall_at_100
426
- value: 90.335
427
- - type: recall_at_1000
428
- value: 97.452
429
- - type: recall_at_3
430
- value: 58.562000000000005
431
- - type: recall_at_5
432
- value: 65.569
433
- - task:
434
- type: Retrieval
435
- dataset:
436
- type: BeIR/cqadupstack
437
- name: MTEB CQADupstackGisRetrieval
438
- config: default
439
- split: test
440
- revision: None
441
- metrics:
442
- - type: map_at_1
443
- value: 26.743
444
- - type: map_at_10
445
- value: 34.016000000000005
446
- - type: map_at_100
447
- value: 35.028999999999996
448
- - type: map_at_1000
449
- value: 35.113
450
- - type: map_at_3
451
- value: 31.763
452
- - type: map_at_5
453
- value: 33.013999999999996
454
- - type: mrr_at_1
455
- value: 28.927000000000003
456
- - type: mrr_at_10
457
- value: 36.32
458
- - type: mrr_at_100
459
- value: 37.221
460
- - type: mrr_at_1000
461
- value: 37.281
462
- - type: mrr_at_3
463
- value: 34.105000000000004
464
- - type: mrr_at_5
465
- value: 35.371
466
- - type: ndcg_at_1
467
- value: 28.927000000000003
468
- - type: ndcg_at_10
469
- value: 38.474000000000004
470
- - type: ndcg_at_100
471
- value: 43.580000000000005
472
- - type: ndcg_at_1000
473
- value: 45.64
474
- - type: ndcg_at_3
475
- value: 34.035
476
- - type: ndcg_at_5
477
- value: 36.186
478
- - type: precision_at_1
479
- value: 28.927000000000003
480
- - type: precision_at_10
481
- value: 5.74
482
- - type: precision_at_100
483
- value: 0.8710000000000001
484
- - type: precision_at_1000
485
- value: 0.108
486
- - type: precision_at_3
487
- value: 14.124
488
- - type: precision_at_5
489
- value: 9.74
490
- - type: recall_at_1
491
- value: 26.743
492
- - type: recall_at_10
493
- value: 49.955
494
- - type: recall_at_100
495
- value: 73.904
496
- - type: recall_at_1000
497
- value: 89.133
498
- - type: recall_at_3
499
- value: 38.072
500
- - type: recall_at_5
501
- value: 43.266
502
- - task:
503
- type: Retrieval
504
- dataset:
505
- type: BeIR/cqadupstack
506
- name: MTEB CQADupstackMathematicaRetrieval
507
- config: default
508
- split: test
509
- revision: None
510
- metrics:
511
- - type: map_at_1
512
- value: 16.928
513
- - type: map_at_10
514
- value: 23.549
515
- - type: map_at_100
516
- value: 24.887
517
- - type: map_at_1000
518
- value: 25.018
519
- - type: map_at_3
520
- value: 21.002000000000002
521
- - type: map_at_5
522
- value: 22.256
523
- - type: mrr_at_1
524
- value: 21.02
525
- - type: mrr_at_10
526
- value: 27.898
527
- - type: mrr_at_100
528
- value: 29.018
529
- - type: mrr_at_1000
530
- value: 29.099999999999998
531
- - type: mrr_at_3
532
- value: 25.456
533
- - type: mrr_at_5
534
- value: 26.625
535
- - type: ndcg_at_1
536
- value: 21.02
537
- - type: ndcg_at_10
538
- value: 28.277
539
- - type: ndcg_at_100
540
- value: 34.54
541
- - type: ndcg_at_1000
542
- value: 37.719
543
- - type: ndcg_at_3
544
- value: 23.707
545
- - type: ndcg_at_5
546
- value: 25.482
547
- - type: precision_at_1
548
- value: 21.02
549
- - type: precision_at_10
550
- value: 5.361
551
- - type: precision_at_100
552
- value: 0.9809999999999999
553
- - type: precision_at_1000
554
- value: 0.13899999999999998
555
- - type: precision_at_3
556
- value: 11.401
557
- - type: precision_at_5
558
- value: 8.209
559
- - type: recall_at_1
560
- value: 16.928
561
- - type: recall_at_10
562
- value: 38.601
563
- - type: recall_at_100
564
- value: 65.759
565
- - type: recall_at_1000
566
- value: 88.543
567
- - type: recall_at_3
568
- value: 25.556
569
- - type: recall_at_5
570
- value: 30.447000000000003
571
- - task:
572
- type: Retrieval
573
- dataset:
574
- type: BeIR/cqadupstack
575
- name: MTEB CQADupstackPhysicsRetrieval
576
- config: default
577
- split: test
578
- revision: None
579
- metrics:
580
- - type: map_at_1
581
- value: 28.549000000000003
582
- - type: map_at_10
583
- value: 38.426
584
- - type: map_at_100
585
- value: 39.845000000000006
586
- - type: map_at_1000
587
- value: 39.956
588
- - type: map_at_3
589
- value: 35.372
590
- - type: map_at_5
591
- value: 37.204
592
- - type: mrr_at_1
593
- value: 35.034
594
- - type: mrr_at_10
595
- value: 44.041000000000004
596
- - type: mrr_at_100
597
- value: 44.95
598
- - type: mrr_at_1000
599
- value: 44.997
600
- - type: mrr_at_3
601
- value: 41.498000000000005
602
- - type: mrr_at_5
603
- value: 43.077
604
- - type: ndcg_at_1
605
- value: 35.034
606
- - type: ndcg_at_10
607
- value: 44.218
608
- - type: ndcg_at_100
609
- value: 49.958000000000006
610
- - type: ndcg_at_1000
611
- value: 52.019000000000005
612
- - type: ndcg_at_3
613
- value: 39.34
614
- - type: ndcg_at_5
615
- value: 41.892
616
- - type: precision_at_1
617
- value: 35.034
618
- - type: precision_at_10
619
- value: 7.911
620
- - type: precision_at_100
621
- value: 1.26
622
- - type: precision_at_1000
623
- value: 0.16
624
- - type: precision_at_3
625
- value: 18.511
626
- - type: precision_at_5
627
- value: 13.205
628
- - type: recall_at_1
629
- value: 28.549000000000003
630
- - type: recall_at_10
631
- value: 56.035999999999994
632
- - type: recall_at_100
633
- value: 79.701
634
- - type: recall_at_1000
635
- value: 93.149
636
- - type: recall_at_3
637
- value: 42.275
638
- - type: recall_at_5
639
- value: 49.097
640
- - task:
641
- type: Retrieval
642
- dataset:
643
- type: BeIR/cqadupstack
644
- name: MTEB CQADupstackProgrammersRetrieval
645
- config: default
646
- split: test
647
- revision: None
648
- metrics:
649
- - type: map_at_1
650
- value: 29.391000000000002
651
- - type: map_at_10
652
- value: 39.48
653
- - type: map_at_100
654
- value: 40.727000000000004
655
- - type: map_at_1000
656
- value: 40.835
657
- - type: map_at_3
658
- value: 36.234
659
- - type: map_at_5
660
- value: 37.877
661
- - type: mrr_at_1
662
- value: 35.959
663
- - type: mrr_at_10
664
- value: 44.726
665
- - type: mrr_at_100
666
- value: 45.531
667
- - type: mrr_at_1000
668
- value: 45.582
669
- - type: mrr_at_3
670
- value: 42.047000000000004
671
- - type: mrr_at_5
672
- value: 43.611
673
- - type: ndcg_at_1
674
- value: 35.959
675
- - type: ndcg_at_10
676
- value: 45.303
677
- - type: ndcg_at_100
678
- value: 50.683
679
- - type: ndcg_at_1000
680
- value: 52.818
681
- - type: ndcg_at_3
682
- value: 39.987
683
- - type: ndcg_at_5
684
- value: 42.243
685
- - type: precision_at_1
686
- value: 35.959
687
- - type: precision_at_10
688
- value: 8.241999999999999
689
- - type: precision_at_100
690
- value: 1.274
691
- - type: precision_at_1000
692
- value: 0.163
693
- - type: precision_at_3
694
- value: 18.836
695
- - type: precision_at_5
696
- value: 13.196
697
- - type: recall_at_1
698
- value: 29.391000000000002
699
- - type: recall_at_10
700
- value: 57.364000000000004
701
- - type: recall_at_100
702
- value: 80.683
703
- - type: recall_at_1000
704
- value: 94.918
705
- - type: recall_at_3
706
- value: 42.263
707
- - type: recall_at_5
708
- value: 48.634
709
- - task:
710
- type: Retrieval
711
- dataset:
712
- type: BeIR/cqadupstack
713
- name: MTEB CQADupstackRetrieval
714
- config: default
715
- split: test
716
- revision: None
717
- metrics:
718
- - type: map_at_1
719
- value: 26.791749999999997
720
- - type: map_at_10
721
- value: 35.75541666666667
722
- - type: map_at_100
723
- value: 37.00791666666667
724
- - type: map_at_1000
725
- value: 37.12408333333333
726
- - type: map_at_3
727
- value: 33.02966666666667
728
- - type: map_at_5
729
- value: 34.56866666666667
730
- - type: mrr_at_1
731
- value: 31.744333333333337
732
- - type: mrr_at_10
733
- value: 39.9925
734
- - type: mrr_at_100
735
- value: 40.86458333333333
736
- - type: mrr_at_1000
737
- value: 40.92175000000001
738
- - type: mrr_at_3
739
- value: 37.68183333333334
740
- - type: mrr_at_5
741
- value: 39.028499999999994
742
- - type: ndcg_at_1
743
- value: 31.744333333333337
744
- - type: ndcg_at_10
745
- value: 40.95008333333334
746
- - type: ndcg_at_100
747
- value: 46.25966666666667
748
- - type: ndcg_at_1000
749
- value: 48.535333333333334
750
- - type: ndcg_at_3
751
- value: 36.43333333333333
752
- - type: ndcg_at_5
753
- value: 38.602333333333334
754
- - type: precision_at_1
755
- value: 31.744333333333337
756
- - type: precision_at_10
757
- value: 7.135166666666666
758
- - type: precision_at_100
759
- value: 1.1535833333333334
760
- - type: precision_at_1000
761
- value: 0.15391666666666665
762
- - type: precision_at_3
763
- value: 16.713
764
- - type: precision_at_5
765
- value: 11.828416666666666
766
- - type: recall_at_1
767
- value: 26.791749999999997
768
- - type: recall_at_10
769
- value: 51.98625
770
- - type: recall_at_100
771
- value: 75.30358333333334
772
- - type: recall_at_1000
773
- value: 91.05433333333333
774
- - type: recall_at_3
775
- value: 39.39583333333333
776
- - type: recall_at_5
777
- value: 45.05925
778
- - task:
779
- type: Retrieval
780
- dataset:
781
- type: BeIR/cqadupstack
782
- name: MTEB CQADupstackStatsRetrieval
783
- config: default
784
- split: test
785
- revision: None
786
- metrics:
787
- - type: map_at_1
788
- value: 22.219
789
- - type: map_at_10
790
- value: 29.162
791
- - type: map_at_100
792
- value: 30.049999999999997
793
- - type: map_at_1000
794
- value: 30.144
795
- - type: map_at_3
796
- value: 27.204
797
- - type: map_at_5
798
- value: 28.351
799
- - type: mrr_at_1
800
- value: 25.153
801
- - type: mrr_at_10
802
- value: 31.814999999999998
803
- - type: mrr_at_100
804
- value: 32.573
805
- - type: mrr_at_1000
806
- value: 32.645
807
- - type: mrr_at_3
808
- value: 29.934
809
- - type: mrr_at_5
810
- value: 30.946
811
- - type: ndcg_at_1
812
- value: 25.153
813
- - type: ndcg_at_10
814
- value: 33.099000000000004
815
- - type: ndcg_at_100
816
- value: 37.768
817
- - type: ndcg_at_1000
818
- value: 40.331
819
- - type: ndcg_at_3
820
- value: 29.473
821
- - type: ndcg_at_5
822
- value: 31.206
823
- - type: precision_at_1
824
- value: 25.153
825
- - type: precision_at_10
826
- value: 5.183999999999999
827
- - type: precision_at_100
828
- value: 0.8170000000000001
829
- - type: precision_at_1000
830
- value: 0.11100000000000002
831
- - type: precision_at_3
832
- value: 12.831999999999999
833
- - type: precision_at_5
834
- value: 8.895999999999999
835
- - type: recall_at_1
836
- value: 22.219
837
- - type: recall_at_10
838
- value: 42.637
839
- - type: recall_at_100
840
- value: 64.704
841
- - type: recall_at_1000
842
- value: 83.963
843
- - type: recall_at_3
844
- value: 32.444
845
- - type: recall_at_5
846
- value: 36.802
847
- - task:
848
- type: Retrieval
849
- dataset:
850
- type: BeIR/cqadupstack
851
- name: MTEB CQADupstackTexRetrieval
852
- config: default
853
- split: test
854
- revision: None
855
- metrics:
856
- - type: map_at_1
857
- value: 17.427999999999997
858
- - type: map_at_10
859
- value: 24.029
860
- - type: map_at_100
861
- value: 25.119999999999997
862
- - type: map_at_1000
863
- value: 25.257
864
- - type: map_at_3
865
- value: 22.016
866
- - type: map_at_5
867
- value: 23.143
868
- - type: mrr_at_1
869
- value: 21.129
870
- - type: mrr_at_10
871
- value: 27.750000000000004
872
- - type: mrr_at_100
873
- value: 28.666999999999998
874
- - type: mrr_at_1000
875
- value: 28.754999999999995
876
- - type: mrr_at_3
877
- value: 25.849
878
- - type: mrr_at_5
879
- value: 26.939999999999998
880
- - type: ndcg_at_1
881
- value: 21.129
882
- - type: ndcg_at_10
883
- value: 28.203
884
- - type: ndcg_at_100
885
- value: 33.44
886
- - type: ndcg_at_1000
887
- value: 36.61
888
- - type: ndcg_at_3
889
- value: 24.648999999999997
890
- - type: ndcg_at_5
891
- value: 26.316
892
- - type: precision_at_1
893
- value: 21.129
894
- - type: precision_at_10
895
- value: 5.055
896
- - type: precision_at_100
897
- value: 0.909
898
- - type: precision_at_1000
899
- value: 0.13699999999999998
900
- - type: precision_at_3
901
- value: 11.666
902
- - type: precision_at_5
903
- value: 8.3
904
- - type: recall_at_1
905
- value: 17.427999999999997
906
- - type: recall_at_10
907
- value: 36.923
908
- - type: recall_at_100
909
- value: 60.606
910
- - type: recall_at_1000
911
- value: 83.19
912
- - type: recall_at_3
913
- value: 26.845000000000002
914
- - type: recall_at_5
915
- value: 31.247000000000003
916
- - task:
917
- type: Retrieval
918
- dataset:
919
- type: BeIR/cqadupstack
920
- name: MTEB CQADupstackUnixRetrieval
921
- config: default
922
- split: test
923
- revision: None
924
- metrics:
925
- - type: map_at_1
926
- value: 26.457000000000004
927
- - type: map_at_10
928
- value: 35.228
929
- - type: map_at_100
930
- value: 36.475
931
- - type: map_at_1000
932
- value: 36.585
933
- - type: map_at_3
934
- value: 32.444
935
- - type: map_at_5
936
- value: 34.046
937
- - type: mrr_at_1
938
- value: 30.784
939
- - type: mrr_at_10
940
- value: 39.133
941
- - type: mrr_at_100
942
- value: 40.11
943
- - type: mrr_at_1000
944
- value: 40.169
945
- - type: mrr_at_3
946
- value: 36.692
947
- - type: mrr_at_5
948
- value: 38.17
949
- - type: ndcg_at_1
950
- value: 30.784
951
- - type: ndcg_at_10
952
- value: 40.358
953
- - type: ndcg_at_100
954
- value: 46.119
955
- - type: ndcg_at_1000
956
- value: 48.428
957
- - type: ndcg_at_3
958
- value: 35.504000000000005
959
- - type: ndcg_at_5
960
- value: 37.864
961
- - type: precision_at_1
962
- value: 30.784
963
- - type: precision_at_10
964
- value: 6.800000000000001
965
- - type: precision_at_100
966
- value: 1.083
967
- - type: precision_at_1000
968
- value: 0.13899999999999998
969
- - type: precision_at_3
970
- value: 15.920000000000002
971
- - type: precision_at_5
972
- value: 11.437
973
- - type: recall_at_1
974
- value: 26.457000000000004
975
- - type: recall_at_10
976
- value: 51.845
977
- - type: recall_at_100
978
- value: 77.046
979
- - type: recall_at_1000
980
- value: 92.892
981
- - type: recall_at_3
982
- value: 38.89
983
- - type: recall_at_5
984
- value: 44.688
985
- - task:
986
- type: Retrieval
987
- dataset:
988
- type: BeIR/cqadupstack
989
- name: MTEB CQADupstackWebmastersRetrieval
990
- config: default
991
- split: test
992
- revision: None
993
- metrics:
994
- - type: map_at_1
995
- value: 29.378999999999998
996
- - type: map_at_10
997
- value: 37.373
998
- - type: map_at_100
999
- value: 39.107
1000
- - type: map_at_1000
1001
- value: 39.317
1002
- - type: map_at_3
1003
- value: 34.563
1004
- - type: map_at_5
1005
- value: 36.173
1006
- - type: mrr_at_1
1007
- value: 35.178
1008
- - type: mrr_at_10
1009
- value: 42.44
1010
- - type: mrr_at_100
1011
- value: 43.434
1012
- - type: mrr_at_1000
1013
- value: 43.482
1014
- - type: mrr_at_3
1015
- value: 39.987
1016
- - type: mrr_at_5
1017
- value: 41.370000000000005
1018
- - type: ndcg_at_1
1019
- value: 35.178
1020
- - type: ndcg_at_10
1021
- value: 42.82
1022
- - type: ndcg_at_100
1023
- value: 48.935
1024
- - type: ndcg_at_1000
1025
- value: 51.28
1026
- - type: ndcg_at_3
1027
- value: 38.562999999999995
1028
- - type: ndcg_at_5
1029
- value: 40.687
1030
- - type: precision_at_1
1031
- value: 35.178
1032
- - type: precision_at_10
1033
- value: 7.945
1034
- - type: precision_at_100
1035
- value: 1.524
1036
- - type: precision_at_1000
1037
- value: 0.242
1038
- - type: precision_at_3
1039
- value: 17.721
1040
- - type: precision_at_5
1041
- value: 12.925
1042
- - type: recall_at_1
1043
- value: 29.378999999999998
1044
- - type: recall_at_10
1045
- value: 52.141999999999996
1046
- - type: recall_at_100
1047
- value: 79.49000000000001
1048
- - type: recall_at_1000
1049
- value: 93.782
1050
- - type: recall_at_3
1051
- value: 39.579
1052
- - type: recall_at_5
1053
- value: 45.462
1054
- - task:
1055
- type: Retrieval
1056
- dataset:
1057
- type: BeIR/cqadupstack
1058
- name: MTEB CQADupstackWordpressRetrieval
1059
- config: default
1060
- split: test
1061
- revision: None
1062
- metrics:
1063
- - type: map_at_1
1064
- value: 19.814999999999998
1065
- - type: map_at_10
1066
- value: 27.383999999999997
1067
- - type: map_at_100
1068
- value: 28.483999999999998
1069
- - type: map_at_1000
1070
- value: 28.585
1071
- - type: map_at_3
1072
- value: 24.807000000000002
1073
- - type: map_at_5
1074
- value: 26.485999999999997
1075
- - type: mrr_at_1
1076
- value: 21.996
1077
- - type: mrr_at_10
1078
- value: 29.584
1079
- - type: mrr_at_100
1080
- value: 30.611
1081
- - type: mrr_at_1000
1082
- value: 30.684
1083
- - type: mrr_at_3
1084
- value: 27.11
1085
- - type: mrr_at_5
1086
- value: 28.746
1087
- - type: ndcg_at_1
1088
- value: 21.996
1089
- - type: ndcg_at_10
1090
- value: 32.024
1091
- - type: ndcg_at_100
1092
- value: 37.528
1093
- - type: ndcg_at_1000
1094
- value: 40.150999999999996
1095
- - type: ndcg_at_3
1096
- value: 27.016000000000002
1097
- - type: ndcg_at_5
1098
- value: 29.927999999999997
1099
- - type: precision_at_1
1100
- value: 21.996
1101
- - type: precision_at_10
1102
- value: 5.102
1103
- - type: precision_at_100
1104
- value: 0.856
1105
- - type: precision_at_1000
1106
- value: 0.117
1107
- - type: precision_at_3
1108
- value: 11.583
1109
- - type: precision_at_5
1110
- value: 8.577
1111
- - type: recall_at_1
1112
- value: 19.814999999999998
1113
- - type: recall_at_10
1114
- value: 44.239
1115
- - type: recall_at_100
1116
- value: 69.269
1117
- - type: recall_at_1000
1118
- value: 89.216
1119
- - type: recall_at_3
1120
- value: 31.102999999999998
1121
- - type: recall_at_5
1122
- value: 38.078
1123
- - task:
1124
- type: Retrieval
1125
- dataset:
1126
- type: climate-fever
1127
- name: MTEB ClimateFEVER
1128
- config: default
1129
- split: test
1130
- revision: None
1131
- metrics:
1132
- - type: map_at_1
1133
- value: 11.349
1134
- - type: map_at_10
1135
- value: 19.436
1136
- - type: map_at_100
1137
- value: 21.282999999999998
1138
- - type: map_at_1000
1139
- value: 21.479
1140
- - type: map_at_3
1141
- value: 15.841
1142
- - type: map_at_5
1143
- value: 17.558
1144
- - type: mrr_at_1
1145
- value: 25.863000000000003
1146
- - type: mrr_at_10
1147
- value: 37.218
1148
- - type: mrr_at_100
1149
- value: 38.198
1150
- - type: mrr_at_1000
1151
- value: 38.236
1152
- - type: mrr_at_3
1153
- value: 33.409
1154
- - type: mrr_at_5
1155
- value: 35.602000000000004
1156
- - type: ndcg_at_1
1157
- value: 25.863000000000003
1158
- - type: ndcg_at_10
1159
- value: 27.953
1160
- - type: ndcg_at_100
1161
- value: 35.327
1162
- - type: ndcg_at_1000
1163
- value: 38.708999999999996
1164
- - type: ndcg_at_3
1165
- value: 21.985
1166
- - type: ndcg_at_5
1167
- value: 23.957
1168
- - type: precision_at_1
1169
- value: 25.863000000000003
1170
- - type: precision_at_10
1171
- value: 8.99
1172
- - type: precision_at_100
1173
- value: 1.6889999999999998
1174
- - type: precision_at_1000
1175
- value: 0.232
1176
- - type: precision_at_3
1177
- value: 16.308
1178
- - type: precision_at_5
1179
- value: 12.912
1180
- - type: recall_at_1
1181
- value: 11.349
1182
- - type: recall_at_10
1183
- value: 34.581
1184
- - type: recall_at_100
1185
- value: 60.178
1186
- - type: recall_at_1000
1187
- value: 78.88199999999999
1188
- - type: recall_at_3
1189
- value: 20.041999999999998
1190
- - type: recall_at_5
1191
- value: 25.458
1192
- - task:
1193
- type: Retrieval
1194
- dataset:
1195
- type: dbpedia-entity
1196
- name: MTEB DBPedia
1197
- config: default
1198
- split: test
1199
- revision: None
1200
- metrics:
1201
- - type: map_at_1
1202
- value: 7.893
1203
- - type: map_at_10
1204
- value: 15.457
1205
- - type: map_at_100
1206
- value: 20.905
1207
- - type: map_at_1000
1208
- value: 22.116
1209
- - type: map_at_3
1210
- value: 11.593
1211
- - type: map_at_5
1212
- value: 13.134
1213
- - type: mrr_at_1
1214
- value: 57.49999999999999
1215
- - type: mrr_at_10
1216
- value: 65.467
1217
- - type: mrr_at_100
1218
- value: 66.022
1219
- - type: mrr_at_1000
1220
- value: 66.039
1221
- - type: mrr_at_3
1222
- value: 63.458000000000006
1223
- - type: mrr_at_5
1224
- value: 64.546
1225
- - type: ndcg_at_1
1226
- value: 45.875
1227
- - type: ndcg_at_10
1228
- value: 33.344
1229
- - type: ndcg_at_100
1230
- value: 36.849
1231
- - type: ndcg_at_1000
1232
- value: 44.03
1233
- - type: ndcg_at_3
1234
- value: 37.504
1235
- - type: ndcg_at_5
1236
- value: 34.892
1237
- - type: precision_at_1
1238
- value: 57.49999999999999
1239
- - type: precision_at_10
1240
- value: 25.95
1241
- - type: precision_at_100
1242
- value: 7.89
1243
- - type: precision_at_1000
1244
- value: 1.669
1245
- - type: precision_at_3
1246
- value: 40.333000000000006
1247
- - type: precision_at_5
1248
- value: 33.050000000000004
1249
- - type: recall_at_1
1250
- value: 7.893
1251
- - type: recall_at_10
1252
- value: 20.724999999999998
1253
- - type: recall_at_100
1254
- value: 42.516
1255
- - type: recall_at_1000
1256
- value: 65.822
1257
- - type: recall_at_3
1258
- value: 12.615000000000002
1259
- - type: recall_at_5
1260
- value: 15.482000000000001
1261
- - task:
1262
- type: Classification
1263
- dataset:
1264
- type: mteb/emotion
1265
- name: MTEB EmotionClassification
1266
- config: default
1267
- split: test
1268
- revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1269
- metrics:
1270
- - type: accuracy
1271
- value: 51.760000000000005
1272
- - type: f1
1273
- value: 45.51690565701713
1274
- - task:
1275
- type: Retrieval
1276
- dataset:
1277
- type: fever
1278
- name: MTEB FEVER
1279
- config: default
1280
- split: test
1281
- revision: None
1282
- metrics:
1283
- - type: map_at_1
1284
- value: 53.882
1285
- - type: map_at_10
1286
- value: 65.902
1287
- - type: map_at_100
1288
- value: 66.33
1289
- - type: map_at_1000
1290
- value: 66.348
1291
- - type: map_at_3
1292
- value: 63.75999999999999
1293
- - type: map_at_5
1294
- value: 65.181
1295
- - type: mrr_at_1
1296
- value: 58.041
1297
- - type: mrr_at_10
1298
- value: 70.133
1299
- - type: mrr_at_100
1300
- value: 70.463
1301
- - type: mrr_at_1000
1302
- value: 70.47
1303
- - type: mrr_at_3
1304
- value: 68.164
1305
- - type: mrr_at_5
1306
- value: 69.465
1307
- - type: ndcg_at_1
1308
- value: 58.041
1309
- - type: ndcg_at_10
1310
- value: 71.84700000000001
1311
- - type: ndcg_at_100
1312
- value: 73.699
1313
- - type: ndcg_at_1000
1314
- value: 74.06700000000001
1315
- - type: ndcg_at_3
1316
- value: 67.855
1317
- - type: ndcg_at_5
1318
- value: 70.203
1319
- - type: precision_at_1
1320
- value: 58.041
1321
- - type: precision_at_10
1322
- value: 9.427000000000001
1323
- - type: precision_at_100
1324
- value: 1.049
1325
- - type: precision_at_1000
1326
- value: 0.11
1327
- - type: precision_at_3
1328
- value: 27.278000000000002
1329
- - type: precision_at_5
1330
- value: 17.693
1331
- - type: recall_at_1
1332
- value: 53.882
1333
- - type: recall_at_10
1334
- value: 85.99
1335
- - type: recall_at_100
1336
- value: 94.09100000000001
1337
- - type: recall_at_1000
1338
- value: 96.612
1339
- - type: recall_at_3
1340
- value: 75.25
1341
- - type: recall_at_5
1342
- value: 80.997
1343
- - task:
1344
- type: Retrieval
1345
- dataset:
1346
- type: fiqa
1347
- name: MTEB FiQA2018
1348
- config: default
1349
- split: test
1350
- revision: None
1351
- metrics:
1352
- - type: map_at_1
1353
- value: 19.165
1354
- - type: map_at_10
1355
- value: 31.845000000000002
1356
- - type: map_at_100
1357
- value: 33.678999999999995
1358
- - type: map_at_1000
1359
- value: 33.878
1360
- - type: map_at_3
1361
- value: 27.881
1362
- - type: map_at_5
1363
- value: 30.049999999999997
1364
- - type: mrr_at_1
1365
- value: 38.272
1366
- - type: mrr_at_10
1367
- value: 47.04
1368
- - type: mrr_at_100
1369
- value: 47.923
1370
- - type: mrr_at_1000
1371
- value: 47.973
1372
- - type: mrr_at_3
1373
- value: 44.985
1374
- - type: mrr_at_5
1375
- value: 46.150000000000006
1376
- - type: ndcg_at_1
1377
- value: 38.272
1378
- - type: ndcg_at_10
1379
- value: 39.177
1380
- - type: ndcg_at_100
1381
- value: 45.995000000000005
1382
- - type: ndcg_at_1000
1383
- value: 49.312
1384
- - type: ndcg_at_3
1385
- value: 36.135
1386
- - type: ndcg_at_5
1387
- value: 36.936
1388
- - type: precision_at_1
1389
- value: 38.272
1390
- - type: precision_at_10
1391
- value: 10.926
1392
- - type: precision_at_100
1393
- value: 1.809
1394
- - type: precision_at_1000
1395
- value: 0.23700000000000002
1396
- - type: precision_at_3
1397
- value: 24.331
1398
- - type: precision_at_5
1399
- value: 17.747
1400
- - type: recall_at_1
1401
- value: 19.165
1402
- - type: recall_at_10
1403
- value: 45.103
1404
- - type: recall_at_100
1405
- value: 70.295
1406
- - type: recall_at_1000
1407
- value: 90.592
1408
- - type: recall_at_3
1409
- value: 32.832
1410
- - type: recall_at_5
1411
- value: 37.905
1412
- - task:
1413
- type: Retrieval
1414
- dataset:
1415
- type: hotpotqa
1416
- name: MTEB HotpotQA
1417
- config: default
1418
- split: test
1419
- revision: None
1420
- metrics:
1421
- - type: map_at_1
1422
- value: 32.397
1423
- - type: map_at_10
1424
- value: 44.83
1425
- - type: map_at_100
1426
- value: 45.716
1427
- - type: map_at_1000
1428
- value: 45.797
1429
- - type: map_at_3
1430
- value: 41.955999999999996
1431
- - type: map_at_5
1432
- value: 43.736999999999995
1433
- - type: mrr_at_1
1434
- value: 64.794
1435
- - type: mrr_at_10
1436
- value: 71.866
1437
- - type: mrr_at_100
1438
- value: 72.22
1439
- - type: mrr_at_1000
1440
- value: 72.238
1441
- - type: mrr_at_3
1442
- value: 70.416
1443
- - type: mrr_at_5
1444
- value: 71.304
1445
- - type: ndcg_at_1
1446
- value: 64.794
1447
- - type: ndcg_at_10
1448
- value: 54.186
1449
- - type: ndcg_at_100
1450
- value: 57.623000000000005
1451
- - type: ndcg_at_1000
1452
- value: 59.302
1453
- - type: ndcg_at_3
1454
- value: 49.703
1455
- - type: ndcg_at_5
1456
- value: 52.154999999999994
1457
- - type: precision_at_1
1458
- value: 64.794
1459
- - type: precision_at_10
1460
- value: 11.219
1461
- - type: precision_at_100
1462
- value: 1.394
1463
- - type: precision_at_1000
1464
- value: 0.16199999999999998
1465
- - type: precision_at_3
1466
- value: 30.767
1467
- - type: precision_at_5
1468
- value: 20.397000000000002
1469
- - type: recall_at_1
1470
- value: 32.397
1471
- - type: recall_at_10
1472
- value: 56.096999999999994
1473
- - type: recall_at_100
1474
- value: 69.696
1475
- - type: recall_at_1000
1476
- value: 80.88499999999999
1477
- - type: recall_at_3
1478
- value: 46.150999999999996
1479
- - type: recall_at_5
1480
- value: 50.993
1481
- - task:
1482
- type: Classification
1483
- dataset:
1484
- type: mteb/imdb
1485
- name: MTEB ImdbClassification
1486
- config: default
1487
- split: test
1488
- revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1489
- metrics:
1490
- - type: accuracy
1491
- value: 81.1744
1492
- - type: ap
1493
- value: 75.44973697032414
1494
- - type: f1
1495
- value: 81.09901117955782
1496
- - task:
1497
- type: Retrieval
1498
- dataset:
1499
- type: msmarco
1500
- name: MTEB MSMARCO
1501
- config: default
1502
- split: dev
1503
- revision: None
1504
- metrics:
1505
- - type: map_at_1
1506
- value: 19.519000000000002
1507
- - type: map_at_10
1508
- value: 31.025000000000002
1509
- - type: map_at_100
1510
- value: 32.275999999999996
1511
- - type: map_at_1000
1512
- value: 32.329
1513
- - type: map_at_3
1514
- value: 27.132
1515
- - type: map_at_5
1516
- value: 29.415999999999997
1517
- - type: mrr_at_1
1518
- value: 20.115
1519
- - type: mrr_at_10
1520
- value: 31.569000000000003
1521
- - type: mrr_at_100
1522
- value: 32.768
1523
- - type: mrr_at_1000
1524
- value: 32.816
1525
- - type: mrr_at_3
1526
- value: 27.748
1527
- - type: mrr_at_5
1528
- value: 29.956
1529
- - type: ndcg_at_1
1530
- value: 20.115
1531
- - type: ndcg_at_10
1532
- value: 37.756
1533
- - type: ndcg_at_100
1534
- value: 43.858000000000004
1535
- - type: ndcg_at_1000
1536
- value: 45.199
1537
- - type: ndcg_at_3
1538
- value: 29.818
1539
- - type: ndcg_at_5
1540
- value: 33.875
1541
- - type: precision_at_1
1542
- value: 20.115
1543
- - type: precision_at_10
1544
- value: 6.122
1545
- - type: precision_at_100
1546
- value: 0.919
1547
- - type: precision_at_1000
1548
- value: 0.10300000000000001
1549
- - type: precision_at_3
1550
- value: 12.794
1551
- - type: precision_at_5
1552
- value: 9.731
1553
- - type: recall_at_1
1554
- value: 19.519000000000002
1555
- - type: recall_at_10
1556
- value: 58.62500000000001
1557
- - type: recall_at_100
1558
- value: 86.99
1559
- - type: recall_at_1000
1560
- value: 97.268
1561
- - type: recall_at_3
1562
- value: 37.002
1563
- - type: recall_at_5
1564
- value: 46.778
1565
- - task:
1566
- type: Classification
1567
- dataset:
1568
- type: mteb/mtop_domain
1569
- name: MTEB MTOPDomainClassification (en)
1570
- config: en
1571
- split: test
1572
- revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1573
- metrics:
1574
- - type: accuracy
1575
- value: 93.71865025079799
1576
- - type: f1
1577
- value: 93.38906173610519
1578
- - task:
1579
- type: Classification
1580
- dataset:
1581
- type: mteb/mtop_intent
1582
- name: MTEB MTOPIntentClassification (en)
1583
- config: en
1584
- split: test
1585
- revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1586
- metrics:
1587
- - type: accuracy
1588
- value: 70.2576379388965
1589
- - type: f1
1590
- value: 49.20405830249464
1591
- - task:
1592
- type: Classification
1593
- dataset:
1594
- type: mteb/amazon_massive_intent
1595
- name: MTEB MassiveIntentClassification (en)
1596
- config: en
1597
- split: test
1598
- revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1599
- metrics:
1600
- - type: accuracy
1601
- value: 67.48486886348351
1602
- - type: f1
1603
- value: 64.92199176095157
1604
- - task:
1605
- type: Classification
1606
- dataset:
1607
- type: mteb/amazon_massive_scenario
1608
- name: MTEB MassiveScenarioClassification (en)
1609
- config: en
1610
- split: test
1611
- revision: 7d571f92784cd94a019292a1f45445077d0ef634
1612
- metrics:
1613
- - type: accuracy
1614
- value: 72.59246805648958
1615
- - type: f1
1616
- value: 72.1222026389164
1617
- - task:
1618
- type: Clustering
1619
- dataset:
1620
- type: mteb/medrxiv-clustering-p2p
1621
- name: MTEB MedrxivClusteringP2P
1622
- config: default
1623
- split: test
1624
- revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1625
- metrics:
1626
- - type: v_measure
1627
- value: 30.887642595096825
1628
- - task:
1629
- type: Clustering
1630
- dataset:
1631
- type: mteb/medrxiv-clustering-s2s
1632
- name: MTEB MedrxivClusteringS2S
1633
- config: default
1634
- split: test
1635
- revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1636
- metrics:
1637
- - type: v_measure
1638
- value: 28.3764418784054
1639
- - task:
1640
- type: Reranking
1641
- dataset:
1642
- type: mteb/mind_small
1643
- name: MTEB MindSmallReranking
1644
- config: default
1645
- split: test
1646
- revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1647
- metrics:
1648
- - type: map
1649
- value: 31.81544126336991
1650
- - type: mrr
1651
- value: 32.82666576268031
1652
- - task:
1653
- type: Retrieval
1654
- dataset:
1655
- type: nfcorpus
1656
- name: MTEB NFCorpus
1657
- config: default
1658
- split: test
1659
- revision: None
1660
- metrics:
1661
- - type: map_at_1
1662
- value: 5.185
1663
- - type: map_at_10
1664
- value: 11.158
1665
- - type: map_at_100
1666
- value: 14.041
1667
- - type: map_at_1000
1668
- value: 15.360999999999999
1669
- - type: map_at_3
1670
- value: 8.417
1671
- - type: map_at_5
1672
- value: 9.378
1673
- - type: mrr_at_1
1674
- value: 44.582
1675
- - type: mrr_at_10
1676
- value: 53.083999999999996
1677
- - type: mrr_at_100
1678
- value: 53.787
1679
- - type: mrr_at_1000
1680
- value: 53.824000000000005
1681
- - type: mrr_at_3
1682
- value: 51.187000000000005
1683
- - type: mrr_at_5
1684
- value: 52.379
1685
- - type: ndcg_at_1
1686
- value: 42.57
1687
- - type: ndcg_at_10
1688
- value: 31.593
1689
- - type: ndcg_at_100
1690
- value: 29.093999999999998
1691
- - type: ndcg_at_1000
1692
- value: 37.909
1693
- - type: ndcg_at_3
1694
- value: 37.083
1695
- - type: ndcg_at_5
1696
- value: 34.397
1697
- - type: precision_at_1
1698
- value: 43.963
1699
- - type: precision_at_10
1700
- value: 23.498
1701
- - type: precision_at_100
1702
- value: 7.6160000000000005
1703
- - type: precision_at_1000
1704
- value: 2.032
1705
- - type: precision_at_3
1706
- value: 34.572
1707
- - type: precision_at_5
1708
- value: 29.412
1709
- - type: recall_at_1
1710
- value: 5.185
1711
- - type: recall_at_10
1712
- value: 15.234
1713
- - type: recall_at_100
1714
- value: 29.49
1715
- - type: recall_at_1000
1716
- value: 62.273999999999994
1717
- - type: recall_at_3
1718
- value: 9.55
1719
- - type: recall_at_5
1720
- value: 11.103
1721
- - task:
1722
- type: Retrieval
1723
- dataset:
1724
- type: nq
1725
- name: MTEB NQ
1726
- config: default
1727
- split: test
1728
- revision: None
1729
- metrics:
1730
- - type: map_at_1
1731
- value: 23.803
1732
- - type: map_at_10
1733
- value: 38.183
1734
- - type: map_at_100
1735
- value: 39.421
1736
- - type: map_at_1000
1737
- value: 39.464
1738
- - type: map_at_3
1739
- value: 33.835
1740
- - type: map_at_5
1741
- value: 36.327
1742
- - type: mrr_at_1
1743
- value: 26.68
1744
- - type: mrr_at_10
1745
- value: 40.439
1746
- - type: mrr_at_100
1747
- value: 41.415
1748
- - type: mrr_at_1000
1749
- value: 41.443999999999996
1750
- - type: mrr_at_3
1751
- value: 36.612
1752
- - type: mrr_at_5
1753
- value: 38.877
1754
- - type: ndcg_at_1
1755
- value: 26.68
1756
- - type: ndcg_at_10
1757
- value: 45.882
1758
- - type: ndcg_at_100
1759
- value: 51.227999999999994
1760
- - type: ndcg_at_1000
1761
- value: 52.207
1762
- - type: ndcg_at_3
1763
- value: 37.511
1764
- - type: ndcg_at_5
1765
- value: 41.749
1766
- - type: precision_at_1
1767
- value: 26.68
1768
- - type: precision_at_10
1769
- value: 7.9750000000000005
1770
- - type: precision_at_100
1771
- value: 1.0959999999999999
1772
- - type: precision_at_1000
1773
- value: 0.11900000000000001
1774
- - type: precision_at_3
1775
- value: 17.449
1776
- - type: precision_at_5
1777
- value: 12.897
1778
- - type: recall_at_1
1779
- value: 23.803
1780
- - type: recall_at_10
1781
- value: 67.152
1782
- - type: recall_at_100
1783
- value: 90.522
1784
- - type: recall_at_1000
1785
- value: 97.743
1786
- - type: recall_at_3
1787
- value: 45.338
1788
- - type: recall_at_5
1789
- value: 55.106
1790
- - task:
1791
- type: Retrieval
1792
- dataset:
1793
- type: quora
1794
- name: MTEB QuoraRetrieval
1795
- config: default
1796
- split: test
1797
- revision: None
1798
- metrics:
1799
- - type: map_at_1
1800
- value: 70.473
1801
- - type: map_at_10
1802
- value: 84.452
1803
- - type: map_at_100
1804
- value: 85.101
1805
- - type: map_at_1000
1806
- value: 85.115
1807
- - type: map_at_3
1808
- value: 81.435
1809
- - type: map_at_5
1810
- value: 83.338
1811
- - type: mrr_at_1
1812
- value: 81.19
1813
- - type: mrr_at_10
1814
- value: 87.324
1815
- - type: mrr_at_100
1816
- value: 87.434
1817
- - type: mrr_at_1000
1818
- value: 87.435
1819
- - type: mrr_at_3
1820
- value: 86.31
1821
- - type: mrr_at_5
1822
- value: 87.002
1823
- - type: ndcg_at_1
1824
- value: 81.21000000000001
1825
- - type: ndcg_at_10
1826
- value: 88.19
1827
- - type: ndcg_at_100
1828
- value: 89.44
1829
- - type: ndcg_at_1000
1830
- value: 89.526
1831
- - type: ndcg_at_3
1832
- value: 85.237
1833
- - type: ndcg_at_5
1834
- value: 86.892
1835
- - type: precision_at_1
1836
- value: 81.21000000000001
1837
- - type: precision_at_10
1838
- value: 13.417000000000002
1839
- - type: precision_at_100
1840
- value: 1.537
1841
- - type: precision_at_1000
1842
- value: 0.157
1843
- - type: precision_at_3
1844
- value: 37.31
1845
- - type: precision_at_5
1846
- value: 24.59
1847
- - type: recall_at_1
1848
- value: 70.473
1849
- - type: recall_at_10
1850
- value: 95.367
1851
- - type: recall_at_100
1852
- value: 99.616
1853
- - type: recall_at_1000
1854
- value: 99.996
1855
- - type: recall_at_3
1856
- value: 86.936
1857
- - type: recall_at_5
1858
- value: 91.557
1859
- - task:
1860
- type: Clustering
1861
- dataset:
1862
- type: mteb/reddit-clustering
1863
- name: MTEB RedditClustering
1864
- config: default
1865
- split: test
1866
- revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1867
- metrics:
1868
- - type: v_measure
1869
- value: 59.25776525253911
1870
- - task:
1871
- type: Clustering
1872
- dataset:
1873
- type: mteb/reddit-clustering-p2p
1874
- name: MTEB RedditClusteringP2P
1875
- config: default
1876
- split: test
1877
- revision: 282350215ef01743dc01b456c7f5241fa8937f16
1878
- metrics:
1879
- - type: v_measure
1880
- value: 63.22135271663078
1881
- - task:
1882
- type: Retrieval
1883
- dataset:
1884
- type: scidocs
1885
- name: MTEB SCIDOCS
1886
- config: default
1887
- split: test
1888
- revision: None
1889
- metrics:
1890
- - type: map_at_1
1891
- value: 4.003
1892
- - type: map_at_10
1893
- value: 10.062999999999999
1894
- - type: map_at_100
1895
- value: 11.854000000000001
1896
- - type: map_at_1000
1897
- value: 12.145999999999999
1898
- - type: map_at_3
1899
- value: 7.242
1900
- - type: map_at_5
1901
- value: 8.652999999999999
1902
- - type: mrr_at_1
1903
- value: 19.7
1904
- - type: mrr_at_10
1905
- value: 29.721999999999998
1906
- - type: mrr_at_100
1907
- value: 30.867
1908
- - type: mrr_at_1000
1909
- value: 30.944
1910
- - type: mrr_at_3
1911
- value: 26.683
1912
- - type: mrr_at_5
1913
- value: 28.498
1914
- - type: ndcg_at_1
1915
- value: 19.7
1916
- - type: ndcg_at_10
1917
- value: 17.095
1918
- - type: ndcg_at_100
1919
- value: 24.375
1920
- - type: ndcg_at_1000
1921
- value: 29.831000000000003
1922
- - type: ndcg_at_3
1923
- value: 16.305
1924
- - type: ndcg_at_5
1925
- value: 14.291
1926
- - type: precision_at_1
1927
- value: 19.7
1928
- - type: precision_at_10
1929
- value: 8.799999999999999
1930
- - type: precision_at_100
1931
- value: 1.9349999999999998
1932
- - type: precision_at_1000
1933
- value: 0.32399999999999995
1934
- - type: precision_at_3
1935
- value: 15.2
1936
- - type: precision_at_5
1937
- value: 12.540000000000001
1938
- - type: recall_at_1
1939
- value: 4.003
1940
- - type: recall_at_10
1941
- value: 17.877000000000002
1942
- - type: recall_at_100
1943
- value: 39.217
1944
- - type: recall_at_1000
1945
- value: 65.862
1946
- - type: recall_at_3
1947
- value: 9.242
1948
- - type: recall_at_5
1949
- value: 12.715000000000002
1950
- - task:
1951
- type: STS
1952
- dataset:
1953
- type: mteb/sickr-sts
1954
- name: MTEB SICK-R
1955
- config: default
1956
- split: test
1957
- revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1958
- metrics:
1959
- - type: cos_sim_spearman
1960
- value: 80.25888668589654
1961
- - task:
1962
- type: STS
1963
- dataset:
1964
- type: mteb/sts12-sts
1965
- name: MTEB STS12
1966
- config: default
1967
- split: test
1968
- revision: a0d554a64d88156834ff5ae9920b964011b16384
1969
- metrics:
1970
- - type: cos_sim_spearman
1971
- value: 77.02037527837669
1972
- - task:
1973
- type: STS
1974
- dataset:
1975
- type: mteb/sts13-sts
1976
- name: MTEB STS13
1977
- config: default
1978
- split: test
1979
- revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1980
- metrics:
1981
- - type: cos_sim_spearman
1982
- value: 86.58432681008449
1983
- - task:
1984
- type: STS
1985
- dataset:
1986
- type: mteb/sts14-sts
1987
- name: MTEB STS14
1988
- config: default
1989
- split: test
1990
- revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
1991
- metrics:
1992
- - type: cos_sim_spearman
1993
- value: 81.31697756099051
1994
- - task:
1995
- type: STS
1996
- dataset:
1997
- type: mteb/sts15-sts
1998
- name: MTEB STS15
1999
- config: default
2000
- split: test
2001
- revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2002
- metrics:
2003
- - type: cos_sim_spearman
2004
- value: 88.18867599667057
2005
- - task:
2006
- type: STS
2007
- dataset:
2008
- type: mteb/sts16-sts
2009
- name: MTEB STS16
2010
- config: default
2011
- split: test
2012
- revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2013
- metrics:
2014
- - type: cos_sim_spearman
2015
- value: 84.87853941747623
2016
- - task:
2017
- type: STS
2018
- dataset:
2019
- type: mteb/sts17-crosslingual-sts
2020
- name: MTEB STS17 (en-en)
2021
- config: en-en
2022
- split: test
2023
- revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2024
- metrics:
2025
- - type: cos_sim_spearman
2026
- value: 89.46479925383916
2027
- - task:
2028
- type: STS
2029
- dataset:
2030
- type: mteb/sts22-crosslingual-sts
2031
- name: MTEB STS22 (en)
2032
- config: en
2033
- split: test
2034
- revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2035
- metrics:
2036
- - type: cos_sim_spearman
2037
- value: 66.45272113649146
2038
- - task:
2039
- type: STS
2040
- dataset:
2041
- type: mteb/stsbenchmark-sts
2042
- name: MTEB STSBenchmark
2043
- config: default
2044
- split: test
2045
- revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2046
- metrics:
2047
- - type: cos_sim_spearman
2048
- value: 86.43357313527851
2049
- - task:
2050
- type: Reranking
2051
- dataset:
2052
- type: mteb/scidocs-reranking
2053
- name: MTEB SciDocsRR
2054
- config: default
2055
- split: test
2056
- revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2057
- metrics:
2058
- - type: map
2059
- value: 78.82761687254882
2060
- - type: mrr
2061
- value: 93.46223674655047
2062
- - task:
2063
- type: Retrieval
2064
- dataset:
2065
- type: scifact
2066
- name: MTEB SciFact
2067
- config: default
2068
- split: test
2069
- revision: None
2070
- metrics:
2071
- - type: map_at_1
2072
- value: 44.583
2073
- - type: map_at_10
2074
- value: 52.978
2075
- - type: map_at_100
2076
- value: 53.803
2077
- - type: map_at_1000
2078
- value: 53.839999999999996
2079
- - type: map_at_3
2080
- value: 50.03300000000001
2081
- - type: map_at_5
2082
- value: 51.939
2083
- - type: mrr_at_1
2084
- value: 47.0
2085
- - type: mrr_at_10
2086
- value: 54.730000000000004
2087
- - type: mrr_at_100
2088
- value: 55.31399999999999
2089
- - type: mrr_at_1000
2090
- value: 55.346
2091
- - type: mrr_at_3
2092
- value: 52.0
2093
- - type: mrr_at_5
2094
- value: 53.783
2095
- - type: ndcg_at_1
2096
- value: 47.0
2097
- - type: ndcg_at_10
2098
- value: 57.82899999999999
2099
- - type: ndcg_at_100
2100
- value: 61.49400000000001
2101
- - type: ndcg_at_1000
2102
- value: 62.676
2103
- - type: ndcg_at_3
2104
- value: 52.373000000000005
2105
- - type: ndcg_at_5
2106
- value: 55.481
2107
- - type: precision_at_1
2108
- value: 47.0
2109
- - type: precision_at_10
2110
- value: 7.867
2111
- - type: precision_at_100
2112
- value: 0.997
2113
- - type: precision_at_1000
2114
- value: 0.11
2115
- - type: precision_at_3
2116
- value: 20.556
2117
- - type: precision_at_5
2118
- value: 14.066999999999998
2119
- - type: recall_at_1
2120
- value: 44.583
2121
- - type: recall_at_10
2122
- value: 71.172
2123
- - type: recall_at_100
2124
- value: 87.7
2125
- - type: recall_at_1000
2126
- value: 97.333
2127
- - type: recall_at_3
2128
- value: 56.511
2129
- - type: recall_at_5
2130
- value: 64.206
2131
- - task:
2132
- type: PairClassification
2133
- dataset:
2134
- type: mteb/sprintduplicatequestions-pairclassification
2135
- name: MTEB SprintDuplicateQuestions
2136
- config: default
2137
- split: test
2138
- revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2139
- metrics:
2140
- - type: cos_sim_accuracy
2141
- value: 99.66237623762376
2142
- - type: cos_sim_ap
2143
- value: 90.35465126226322
2144
- - type: cos_sim_f1
2145
- value: 82.44575936883628
2146
- - type: cos_sim_precision
2147
- value: 81.32295719844358
2148
- - type: cos_sim_recall
2149
- value: 83.6
2150
- - type: dot_accuracy
2151
- value: 99.66237623762376
2152
- - type: dot_ap
2153
- value: 90.35464287920453
2154
- - type: dot_f1
2155
- value: 82.44575936883628
2156
- - type: dot_precision
2157
- value: 81.32295719844358
2158
- - type: dot_recall
2159
- value: 83.6
2160
- - type: euclidean_accuracy
2161
- value: 99.66237623762376
2162
- - type: euclidean_ap
2163
- value: 90.3546512622632
2164
- - type: euclidean_f1
2165
- value: 82.44575936883628
2166
- - type: euclidean_precision
2167
- value: 81.32295719844358
2168
- - type: euclidean_recall
2169
- value: 83.6
2170
- - type: manhattan_accuracy
2171
- value: 99.65940594059406
2172
- - type: manhattan_ap
2173
- value: 90.29220174849843
2174
- - type: manhattan_f1
2175
- value: 82.4987605354487
2176
- - type: manhattan_precision
2177
- value: 81.80924287118977
2178
- - type: manhattan_recall
2179
- value: 83.2
2180
- - type: max_accuracy
2181
- value: 99.66237623762376
2182
- - type: max_ap
2183
- value: 90.35465126226322
2184
- - type: max_f1
2185
- value: 82.4987605354487
2186
- - task:
2187
- type: Clustering
2188
- dataset:
2189
- type: mteb/stackexchange-clustering
2190
- name: MTEB StackExchangeClustering
2191
- config: default
2192
- split: test
2193
- revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2194
- metrics:
2195
- - type: v_measure
2196
- value: 65.0394225901397
2197
- - task:
2198
- type: Clustering
2199
- dataset:
2200
- type: mteb/stackexchange-clustering-p2p
2201
- name: MTEB StackExchangeClusteringP2P
2202
- config: default
2203
- split: test
2204
- revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2205
- metrics:
2206
- - type: v_measure
2207
- value: 35.27954189859326
2208
- - task:
2209
- type: Reranking
2210
- dataset:
2211
- type: mteb/stackoverflowdupquestions-reranking
2212
- name: MTEB StackOverflowDupQuestions
2213
- config: default
2214
- split: test
2215
- revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2216
- metrics:
2217
- - type: map
2218
- value: 50.99055979974896
2219
- - type: mrr
2220
- value: 51.82745257193787
2221
- - task:
2222
- type: Summarization
2223
- dataset:
2224
- type: mteb/summeval
2225
- name: MTEB SummEval
2226
- config: default
2227
- split: test
2228
- revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2229
- metrics:
2230
- - type: cos_sim_pearson
2231
- value: 30.21655465344237
2232
- - type: cos_sim_spearman
2233
- value: 29.853205339630172
2234
- - type: dot_pearson
2235
- value: 30.216540628083564
2236
- - type: dot_spearman
2237
- value: 29.868978894753027
2238
- - task:
2239
- type: Retrieval
2240
- dataset:
2241
- type: trec-covid
2242
- name: MTEB TRECCOVID
2243
- config: default
2244
- split: test
2245
- revision: None
2246
- metrics:
2247
- - type: map_at_1
2248
- value: 0.2
2249
- - type: map_at_10
2250
- value: 1.398
2251
- - type: map_at_100
2252
- value: 7.406
2253
- - type: map_at_1000
2254
- value: 18.401
2255
- - type: map_at_3
2256
- value: 0.479
2257
- - type: map_at_5
2258
- value: 0.772
2259
- - type: mrr_at_1
2260
- value: 70.0
2261
- - type: mrr_at_10
2262
- value: 79.25999999999999
2263
- - type: mrr_at_100
2264
- value: 79.25999999999999
2265
- - type: mrr_at_1000
2266
- value: 79.25999999999999
2267
- - type: mrr_at_3
2268
- value: 77.333
2269
- - type: mrr_at_5
2270
- value: 78.133
2271
- - type: ndcg_at_1
2272
- value: 63.0
2273
- - type: ndcg_at_10
2274
- value: 58.548
2275
- - type: ndcg_at_100
2276
- value: 45.216
2277
- - type: ndcg_at_1000
2278
- value: 41.149
2279
- - type: ndcg_at_3
2280
- value: 60.641999999999996
2281
- - type: ndcg_at_5
2282
- value: 61.135
2283
- - type: precision_at_1
2284
- value: 70.0
2285
- - type: precision_at_10
2286
- value: 64.0
2287
- - type: precision_at_100
2288
- value: 46.92
2289
- - type: precision_at_1000
2290
- value: 18.642
2291
- - type: precision_at_3
2292
- value: 64.667
2293
- - type: precision_at_5
2294
- value: 66.4
2295
- - type: recall_at_1
2296
- value: 0.2
2297
- - type: recall_at_10
2298
- value: 1.6729999999999998
2299
- - type: recall_at_100
2300
- value: 10.856
2301
- - type: recall_at_1000
2302
- value: 38.964999999999996
2303
- - type: recall_at_3
2304
- value: 0.504
2305
- - type: recall_at_5
2306
- value: 0.852
2307
- - task:
2308
- type: Retrieval
2309
- dataset:
2310
- type: webis-touche2020
2311
- name: MTEB Touche2020
2312
- config: default
2313
- split: test
2314
- revision: None
2315
- metrics:
2316
- - type: map_at_1
2317
- value: 1.6629999999999998
2318
- - type: map_at_10
2319
- value: 8.601
2320
- - type: map_at_100
2321
- value: 14.354
2322
- - type: map_at_1000
2323
- value: 15.927
2324
- - type: map_at_3
2325
- value: 4.1930000000000005
2326
- - type: map_at_5
2327
- value: 5.655
2328
- - type: mrr_at_1
2329
- value: 18.367
2330
- - type: mrr_at_10
2331
- value: 34.466
2332
- - type: mrr_at_100
2333
- value: 35.235
2334
- - type: mrr_at_1000
2335
- value: 35.27
2336
- - type: mrr_at_3
2337
- value: 28.571
2338
- - type: mrr_at_5
2339
- value: 31.531
2340
- - type: ndcg_at_1
2341
- value: 14.285999999999998
2342
- - type: ndcg_at_10
2343
- value: 20.374
2344
- - type: ndcg_at_100
2345
- value: 33.532000000000004
2346
- - type: ndcg_at_1000
2347
- value: 45.561
2348
- - type: ndcg_at_3
2349
- value: 18.442
2350
- - type: ndcg_at_5
2351
- value: 18.076
2352
- - type: precision_at_1
2353
- value: 18.367
2354
- - type: precision_at_10
2355
- value: 20.204
2356
- - type: precision_at_100
2357
- value: 7.489999999999999
2358
- - type: precision_at_1000
2359
- value: 1.5630000000000002
2360
- - type: precision_at_3
2361
- value: 21.769
2362
- - type: precision_at_5
2363
- value: 20.408
2364
- - type: recall_at_1
2365
- value: 1.6629999999999998
2366
- - type: recall_at_10
2367
- value: 15.549
2368
- - type: recall_at_100
2369
- value: 47.497
2370
- - type: recall_at_1000
2371
- value: 84.524
2372
- - type: recall_at_3
2373
- value: 5.289
2374
- - type: recall_at_5
2375
- value: 8.035
2376
- - task:
2377
- type: Classification
2378
- dataset:
2379
- type: mteb/toxic_conversations_50k
2380
- name: MTEB ToxicConversationsClassification
2381
- config: default
2382
- split: test
2383
- revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2384
- metrics:
2385
- - type: accuracy
2386
- value: 71.8194
2387
- - type: ap
2388
- value: 14.447702451658554
2389
- - type: f1
2390
- value: 55.13659412856185
2391
- - task:
2392
- type: Classification
2393
- dataset:
2394
- type: mteb/tweet_sentiment_extraction
2395
- name: MTEB TweetSentimentExtractionClassification
2396
- config: default
2397
- split: test
2398
- revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2399
- metrics:
2400
- - type: accuracy
2401
- value: 63.310696095076416
2402
- - type: f1
2403
- value: 63.360434851097814
2404
- - task:
2405
- type: Clustering
2406
- dataset:
2407
- type: mteb/twentynewsgroups-clustering
2408
- name: MTEB TwentyNewsgroupsClustering
2409
- config: default
2410
- split: test
2411
- revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2412
- metrics:
2413
- - type: v_measure
2414
- value: 51.30677907335145
2415
- - task:
2416
- type: PairClassification
2417
- dataset:
2418
- type: mteb/twittersemeval2015-pairclassification
2419
- name: MTEB TwitterSemEval2015
2420
- config: default
2421
- split: test
2422
- revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2423
- metrics:
2424
- - type: cos_sim_accuracy
2425
- value: 86.12386004649221
2426
- - type: cos_sim_ap
2427
- value: 73.99096426215495
2428
- - type: cos_sim_f1
2429
- value: 68.18416968442834
2430
- - type: cos_sim_precision
2431
- value: 66.86960933536275
2432
- - type: cos_sim_recall
2433
- value: 69.55145118733509
2434
- - type: dot_accuracy
2435
- value: 86.12386004649221
2436
- - type: dot_ap
2437
- value: 73.99096813038672
2438
- - type: dot_f1
2439
- value: 68.18416968442834
2440
- - type: dot_precision
2441
- value: 66.86960933536275
2442
- - type: dot_recall
2443
- value: 69.55145118733509
2444
- - type: euclidean_accuracy
2445
- value: 86.12386004649221
2446
- - type: euclidean_ap
2447
- value: 73.99095984980165
2448
- - type: euclidean_f1
2449
- value: 68.18416968442834
2450
- - type: euclidean_precision
2451
- value: 66.86960933536275
2452
- - type: euclidean_recall
2453
- value: 69.55145118733509
2454
- - type: manhattan_accuracy
2455
- value: 86.09405734040651
2456
- - type: manhattan_ap
2457
- value: 73.96825745608601
2458
- - type: manhattan_f1
2459
- value: 68.13888179729383
2460
- - type: manhattan_precision
2461
- value: 65.99901088031652
2462
- - type: manhattan_recall
2463
- value: 70.42216358839049
2464
- - type: max_accuracy
2465
- value: 86.12386004649221
2466
- - type: max_ap
2467
- value: 73.99096813038672
2468
- - type: max_f1
2469
- value: 68.18416968442834
2470
- - task:
2471
- type: PairClassification
2472
- dataset:
2473
- type: mteb/twitterurlcorpus-pairclassification
2474
- name: MTEB TwitterURLCorpus
2475
- config: default
2476
- split: test
2477
- revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2478
- metrics:
2479
- - type: cos_sim_accuracy
2480
- value: 88.99367407924865
2481
- - type: cos_sim_ap
2482
- value: 86.19720829843081
2483
- - type: cos_sim_f1
2484
- value: 78.39889075384951
2485
- - type: cos_sim_precision
2486
- value: 74.5110278818144
2487
- - type: cos_sim_recall
2488
- value: 82.71481367416075
2489
- - type: dot_accuracy
2490
- value: 88.99367407924865
2491
- - type: dot_ap
2492
- value: 86.19718471454047
2493
- - type: dot_f1
2494
- value: 78.39889075384951
2495
- - type: dot_precision
2496
- value: 74.5110278818144
2497
- - type: dot_recall
2498
- value: 82.71481367416075
2499
- - type: euclidean_accuracy
2500
- value: 88.99367407924865
2501
- - type: euclidean_ap
2502
- value: 86.1972021422436
2503
- - type: euclidean_f1
2504
- value: 78.39889075384951
2505
- - type: euclidean_precision
2506
- value: 74.5110278818144
2507
- - type: euclidean_recall
2508
- value: 82.71481367416075
2509
- - type: manhattan_accuracy
2510
- value: 88.95680521597392
2511
- - type: manhattan_ap
2512
- value: 86.16659921351506
2513
- - type: manhattan_f1
2514
- value: 78.39125971550081
2515
- - type: manhattan_precision
2516
- value: 74.82502799552073
2517
- - type: manhattan_recall
2518
- value: 82.31444410224823
2519
- - type: max_accuracy
2520
- value: 88.99367407924865
2521
- - type: max_ap
2522
- value: 86.19720829843081
2523
- - type: max_f1
2524
- value: 78.39889075384951
2525
  ---
 
2526
  # pascalhuerten/instructor-skillfit
2527
  A finetuning of hkunlp/instructor-base specialized on performing retrival of relevant skills based on a given learning outcome.
2528
 
 
24
  - fever
25
  - hotpot_qa
26
  - mteb
27
+ language:
28
+ - en
29
+ - de
30
  inference: false
31
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  ---
33
+
34
  # pascalhuerten/instructor-skillfit
35
  A finetuning of hkunlp/instructor-base specialized on performing retrival of relevant skills based on a given learning outcome.
36