File size: 2,004 Bytes
fe9784b 5d22897 8e90400 fe9784b 5d22897 fe9784b 35bc8a5 fe9784b 8e90400 5d22897 fe9784b 5d22897 fe9784b 35bc8a5 64fa1f8 5d22897 35bc8a5 5d22897 fe9784b 8e90400 fe9784b 8e90400 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
base_model: bigcode/starcoderbase-1b
library_name: peft
license: bigcode-openrail-m
tags:
- generated_from_trainer
model-index:
- name: peft-starcoder-finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# peft-starcoder-finetuned
This model is a fine-tuned version of [bigcode/starcoderbase-1b](https://huggingface.co/bigcode/starcoderbase-1b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7358
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 1.1611 | 2.8470 | 100 | 0.6569 |
| 0.845 | 5.6940 | 200 | 0.6875 |
| 0.7272 | 8.5409 | 300 | 0.6951 |
| 0.6726 | 11.3879 | 400 | 0.7098 |
| 0.6433 | 14.2349 | 500 | 0.7211 |
| 0.6115 | 17.0819 | 600 | 0.7309 |
| 0.5989 | 19.9288 | 700 | 0.7325 |
| 0.5888 | 22.7758 | 800 | 0.7352 |
| 0.5828 | 25.6228 | 900 | 0.7355 |
| 0.5851 | 28.4698 | 1000 | 0.7358 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.3 |