File size: 2,004 Bytes
fe9784b
5d22897
8e90400
 
fe9784b
 
 
 
 
 
 
 
 
 
 
 
5d22897
fe9784b
35bc8a5
fe9784b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e90400
5d22897
 
fe9784b
 
5d22897
fe9784b
 
35bc8a5
64fa1f8
5d22897
 
 
35bc8a5
 
 
 
 
 
 
 
 
 
 
 
5d22897
fe9784b
 
 
8e90400
fe9784b
 
 
8e90400
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
base_model: bigcode/starcoderbase-1b
library_name: peft
license: bigcode-openrail-m
tags:
- generated_from_trainer
model-index:
- name: peft-starcoder-finetuned
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# peft-starcoder-finetuned

This model is a fine-tuned version of [bigcode/starcoderbase-1b](https://huggingface.co/bigcode/starcoderbase-1b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7358

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 1000

### Training results

| Training Loss | Epoch   | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 1.1611        | 2.8470  | 100  | 0.6569          |
| 0.845         | 5.6940  | 200  | 0.6875          |
| 0.7272        | 8.5409  | 300  | 0.6951          |
| 0.6726        | 11.3879 | 400  | 0.7098          |
| 0.6433        | 14.2349 | 500  | 0.7211          |
| 0.6115        | 17.0819 | 600  | 0.7309          |
| 0.5989        | 19.9288 | 700  | 0.7325          |
| 0.5888        | 22.7758 | 800  | 0.7352          |
| 0.5828        | 25.6228 | 900  | 0.7355          |
| 0.5851        | 28.4698 | 1000 | 0.7358          |


### Framework versions

- PEFT 0.13.2
- Transformers 4.46.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.3