File size: 4,080 Bytes
e7d5d48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
---
base_model: bigcode/starcoderbase-1b
library_name: peft
license: bigcode-openrail-m
tags:
- generated_from_trainer
model-index:
- name: peft-starcoder-finetuned-cpp
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# peft-starcoder-finetuned-cpp
This model is a fine-tuned version of [bigcode/starcoderbase-1b](https://huggingface.co/bigcode/starcoderbase-1b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6176
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.9707 | 0.1273 | 20 | 0.9157 |
| 0.9027 | 0.2546 | 40 | 0.8960 |
| 0.7973 | 0.3819 | 60 | 0.8843 |
| 0.7716 | 0.5091 | 80 | 0.8618 |
| 0.6858 | 0.6364 | 100 | 0.8392 |
| 0.6603 | 0.7637 | 120 | 0.8126 |
| 0.6288 | 0.8910 | 140 | 0.7950 |
| 0.5693 | 1.0183 | 160 | 0.7798 |
| 0.5035 | 1.1456 | 180 | 0.7706 |
| 0.5376 | 1.2729 | 200 | 0.7583 |
| 0.4893 | 1.4002 | 220 | 0.7469 |
| 0.5256 | 1.5274 | 240 | 0.7366 |
| 0.4646 | 1.6547 | 260 | 0.7262 |
| 0.5039 | 1.7820 | 280 | 0.7156 |
| 0.4376 | 1.9093 | 300 | 0.7062 |
| 0.4262 | 2.0366 | 320 | 0.7000 |
| 0.445 | 2.1639 | 340 | 0.6917 |
| 0.4307 | 2.2912 | 360 | 0.6847 |
| 0.4531 | 2.4185 | 380 | 0.6822 |
| 0.4018 | 2.5457 | 400 | 0.6758 |
| 0.4466 | 2.6730 | 420 | 0.6695 |
| 0.3934 | 2.8003 | 440 | 0.6649 |
| 0.3815 | 2.9276 | 460 | 0.6607 |
| 0.3834 | 3.0549 | 480 | 0.6575 |
| 0.4001 | 3.1822 | 500 | 0.6523 |
| 0.398 | 3.3095 | 520 | 0.6481 |
| 0.3824 | 3.4368 | 540 | 0.6453 |
| 0.3756 | 3.5640 | 560 | 0.6409 |
| 0.3843 | 3.6913 | 580 | 0.6382 |
| 0.3829 | 3.8186 | 600 | 0.6357 |
| 0.3534 | 3.9459 | 620 | 0.6345 |
| 0.4136 | 4.0732 | 640 | 0.6343 |
| 0.3409 | 4.2005 | 660 | 0.6321 |
| 0.357 | 4.3278 | 680 | 0.6288 |
| 0.397 | 4.4551 | 700 | 0.6263 |
| 0.3713 | 4.5823 | 720 | 0.6255 |
| 0.3914 | 4.7096 | 740 | 0.6242 |
| 0.3657 | 4.8369 | 760 | 0.6230 |
| 0.3711 | 4.9642 | 780 | 0.6216 |
| 0.3538 | 5.0915 | 800 | 0.6205 |
| 0.377 | 5.2188 | 820 | 0.6199 |
| 0.3426 | 5.3461 | 840 | 0.6194 |
| 0.3583 | 5.4733 | 860 | 0.6188 |
| 0.3643 | 5.6006 | 880 | 0.6180 |
| 0.362 | 5.7279 | 900 | 0.6178 |
| 0.388 | 5.8552 | 920 | 0.6177 |
| 0.3424 | 5.9825 | 940 | 0.6177 |
| 0.3614 | 6.1098 | 960 | 0.6176 |
| 0.3652 | 6.2371 | 980 | 0.6176 |
| 0.3691 | 6.3644 | 1000 | 0.6176 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.3 |