whisper-base-ml / README.md
parambharat's picture
Update metadata with huggingface_hub
aff9369
---
language:
- ml
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Base ML - Bharat Ramanathan
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: mozilla-foundation/common_voice_11_0
type: mozilla-foundation/common_voice_11_0
config: ml
split: test
metrics:
- type: wer
value: 34.16
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: google/fleurs
type: google/fleurs
config: ml_in
split: test
metrics:
- type: wer
value: 53.29
name: WER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Base ML - Bharat Ramanathan
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2456
- Wer: 48.0535
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.7249 | 4.02 | 500 | 0.3786 | 70.8029 |
| 0.3377 | 4.02 | 1000 | 0.2477 | 56.2044 |
| 0.25 | 9.01 | 1500 | 0.2241 | 49.5134 |
| 0.2009 | 14.01 | 2000 | 0.2158 | 46.9586 |
| 0.1674 | 19.0 | 2500 | 0.2188 | 49.3917 |
| 0.142 | 23.02 | 3000 | 0.2194 | 49.6350 |
| 0.123 | 28.01 | 3500 | 0.2280 | 49.7567 |
| 0.1103 | 33.01 | 4000 | 0.2424 | 51.4599 |
| 0.0999 | 38.0 | 4500 | 0.2435 | 50.6083 |
| 0.0951 | 42.02 | 5000 | 0.2456 | 48.0535 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2