- Flash-Splat: 3D Reflection Removal with Flash Cues and Gaussian Splats We introduce a simple yet effective approach for separating transmitted and reflected light. Our key insight is that the powerful novel view synthesis capabilities provided by modern inverse rendering methods (e.g.,~3D Gaussian splatting) allow one to perform flash/no-flash reflection separation using unpaired measurements -- this relaxation dramatically simplifies image acquisition over conventional paired flash/no-flash reflection separation methods. Through extensive real-world experiments, we demonstrate our method, Flash-Splat, accurately reconstructs both transmitted and reflected scenes in 3D. Our method outperforms existing 3D reflection separation methods, which do not leverage illumination control, by a large margin. Our project webpage is at https://flash-splat.github.io/. 7 authors · Oct 3, 2024
- Neither weak nor strong entropic Leggett-Garg inequalities can be violated The Leggett-Garg inequalities probe the classical-quantum boundary by putting limits on the sum of pairwise correlation functions between classical measurement devices that consecutively measured the same quantum system. The apparent violation of these inequalities by standard quantum measurements has cast doubt on quantum mechanics' ability to consistently describe classical objects. Recent work has concluded that these inequalities cannot be violated by either strong or weak projective measurements [1]. Here I consider an entropic version of the Leggett-Garg inequalities that are different from the standard inequalities yet similar in form, and can be defined without reference to any particular observable. I find that the entropic inequalities also cannot be be violated by strong quantum measurements. The entropic inequalities can be extended to describe weak quantum measurements, and I show that these weak entropic Leggett-Garg inequalities cannot be violated either even though the quantum system remains unprojected, because the inequalities describe the classical measurement devices, not the quantum system. I conclude that quantum mechanics adequately describes classical devices, and that we should be careful not to assume that the classical devices accurately describe the quantum system. 1 authors · Aug 8, 2019
- Leggett-Garg inequalities cannot be violated in quantum measurements Leggett and Garg derived inequalities that probe the boundaries of classical and quantum physics by putting limits on the properties that classical objects can have. Historically, it has been suggested that Leggett-Garg inequalities are easily violated by quantum systems undergoing sequences of strong measurements, casting doubt on whether quantum mechanics correctly describes macroscopic objects. Here I show that Leggett-Garg inequalities cannot be violated by any projective measurement. The perceived violation of the inequalities found previously can be traced back to an inappropriate assumption of non-invasive measurability. Surprisingly, weak projective measurements cannot violate the Leggett-Garg inequalities either because even though the quantum system itself is not fully projected via weak measurements, the measurement devices are. 1 authors · Aug 7, 2019
- Plug-and-Play Posterior Sampling under Mismatched Measurement and Prior Models Posterior sampling has been shown to be a powerful Bayesian approach for solving imaging inverse problems. The recent plug-and-play unadjusted Langevin algorithm (PnP-ULA) has emerged as a promising method for Monte Carlo sampling and minimum mean squared error (MMSE) estimation by combining physical measurement models with deep-learning priors specified using image denoisers. However, the intricate relationship between the sampling distribution of PnP-ULA and the mismatched data-fidelity and denoiser has not been theoretically analyzed. We address this gap by proposing a posterior-L2 pseudometric and using it to quantify an explicit error bound for PnP-ULA under mismatched posterior distribution. We numerically validate our theory on several inverse problems such as sampling from Gaussian mixture models and image deblurring. Our results suggest that the sensitivity of the sampling distribution of PnP-ULA to a mismatch in the measurement model and the denoiser can be precisely characterized. 5 authors · Oct 5, 2023
- Regression with Sensor Data Containing Incomplete Observations This paper addresses a regression problem in which output label values are the results of sensing the magnitude of a phenomenon. A low value of such labels can mean either that the actual magnitude of the phenomenon was low or that the sensor made an incomplete observation. This leads to a bias toward lower values in labels and the resultant learning because labels may have lower values due to incomplete observations, even if the actual magnitude of the phenomenon was high. Moreover, because an incomplete observation does not provide any tags indicating incompleteness, we cannot eliminate or impute them. To address this issue, we propose a learning algorithm that explicitly models incomplete observations corrupted with an asymmetric noise that always has a negative value. We show that our algorithm is unbiased as if it were learned from uncorrupted data that does not involve incomplete observations. We demonstrate the advantages of our algorithm through numerical experiments. 2 authors · Apr 26, 2023