1 CRCE: Coreference-Retention Concept Erasure in Text-to-Image Diffusion Models Text-to-Image diffusion models can produce undesirable content that necessitates concept erasure techniques. However, existing methods struggle with under-erasure, leaving residual traces of targeted concepts, or over-erasure, mistakenly eliminating unrelated but visually similar concepts. To address these limitations, we introduce CRCE, a novel concept erasure framework that leverages Large Language Models to identify both semantically related concepts that should be erased alongside the target and distinct concepts that should be preserved. By explicitly modeling coreferential and retained concepts semantically, CRCE enables more precise concept removal, without unintended erasure. Experiments demonstrate that CRCE outperforms existing methods on diverse erasure tasks. 5 authors · Mar 18
1 SPEED: Scalable, Precise, and Efficient Concept Erasure for Diffusion Models Erasing concepts from large-scale text-to-image (T2I) diffusion models has become increasingly crucial due to the growing concerns over copyright infringement, offensive content, and privacy violations. However, existing methods either require costly fine-tuning or degrade image quality for non-target concepts (i.e., prior) due to inherent optimization limitations. In this paper, we introduce SPEED, a model editing-based concept erasure approach that leverages null-space constraints for scalable, precise, and efficient erasure. Specifically, SPEED incorporates Influence-based Prior Filtering (IPF) to retain the most affected non-target concepts during erasing, Directed Prior Augmentation (DPA) to expand prior coverage while maintaining semantic consistency, and Invariant Equality Constraints (IEC) to regularize model editing by explicitly preserving key invariants during the T2I generation process. Extensive evaluations across multiple concept erasure tasks demonstrate that SPEED consistently outperforms existing methods in prior preservation while achieving efficient and high-fidelity concept erasure, successfully removing 100 concepts within just 5 seconds. Our code and models are available at: https://github.com/Ouxiang-Li/SPEED. 8 authors · Mar 10
1 Unified Concept Editing in Diffusion Models Text-to-image models suffer from various safety issues that may limit their suitability for deployment. Previous methods have separately addressed individual issues of bias, copyright, and offensive content in text-to-image models. However, in the real world, all of these issues appear simultaneously in the same model. We present a method that tackles all issues with a single approach. Our method, Unified Concept Editing (UCE), edits the model without training using a closed-form solution, and scales seamlessly to concurrent edits on text-conditional diffusion models. We demonstrate scalable simultaneous debiasing, style erasure, and content moderation by editing text-to-image projections, and we present extensive experiments demonstrating improved efficacy and scalability over prior work. Our code is available at https://unified.baulab.info 5 authors · Aug 25, 2023