Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeFactoring the Matrix of Domination: A Critical Review and Reimagination of Intersectionality in AI Fairness
Intersectionality is a critical framework that, through inquiry and praxis, allows us to examine how social inequalities persist through domains of structure and discipline. Given AI fairness' raison d'etre of "fairness", we argue that adopting intersectionality as an analytical framework is pivotal to effectively operationalizing fairness. Through a critical review of how intersectionality is discussed in 30 papers from the AI fairness literature, we deductively and inductively: 1) map how intersectionality tenets operate within the AI fairness paradigm and 2) uncover gaps between the conceptualization and operationalization of intersectionality. We find that researchers overwhelmingly reduce intersectionality to optimizing for fairness metrics over demographic subgroups. They also fail to discuss their social context and when mentioning power, they mostly situate it only within the AI pipeline. We: 3) outline and assess the implications of these gaps for critical inquiry and praxis, and 4) provide actionable recommendations for AI fairness researchers to engage with intersectionality in their work by grounding it in AI epistemology.
How Are LLMs Mitigating Stereotyping Harms? Learning from Search Engine Studies
With the widespread availability of LLMs since the release of ChatGPT and increased public scrutiny, commercial model development appears to have focused their efforts on 'safety' training concerning legal liabilities at the expense of social impact evaluation. This mimics a similar trend which we could observe for search engine autocompletion some years prior. We draw on scholarship from NLP and search engine auditing and present a novel evaluation task in the style of autocompletion prompts to assess stereotyping in LLMs. We assess LLMs by using four metrics, namely refusal rates, toxicity, sentiment and regard, with and without safety system prompts. Our findings indicate an improvement to stereotyping outputs with the system prompt, but overall a lack of attention by LLMs under study to certain harms classified as toxic, particularly for prompts about peoples/ethnicities and sexual orientation. Mentions of intersectional identities trigger a disproportionate amount of stereotyping. Finally, we discuss the implications of these findings about stereotyping harms in light of the coming intermingling of LLMs and search and the choice of stereotyping mitigation policy to adopt. We address model builders, academics, NLP practitioners and policy makers, calling for accountability and awareness concerning stereotyping harms, be it for training data curation, leader board design and usage, or social impact measurement.
Marked Personas: Using Natural Language Prompts to Measure Stereotypes in Language Models
To recognize and mitigate harms from large language models (LLMs), we need to understand the prevalence and nuances of stereotypes in LLM outputs. Toward this end, we present Marked Personas, a prompt-based method to measure stereotypes in LLMs for intersectional demographic groups without any lexicon or data labeling. Grounded in the sociolinguistic concept of markedness (which characterizes explicitly linguistically marked categories versus unmarked defaults), our proposed method is twofold: 1) prompting an LLM to generate personas, i.e., natural language descriptions, of the target demographic group alongside personas of unmarked, default groups; 2) identifying the words that significantly distinguish personas of the target group from corresponding unmarked ones. We find that the portrayals generated by GPT-3.5 and GPT-4 contain higher rates of racial stereotypes than human-written portrayals using the same prompts. The words distinguishing personas of marked (non-white, non-male) groups reflect patterns of othering and exoticizing these demographics. An intersectional lens further reveals tropes that dominate portrayals of marginalized groups, such as tropicalism and the hypersexualization of minoritized women. These representational harms have concerning implications for downstream applications like story generation.
IndiBias: A Benchmark Dataset to Measure Social Biases in Language Models for Indian Context
The pervasive influence of social biases in language data has sparked the need for benchmark datasets that capture and evaluate these biases in Large Language Models (LLMs). Existing efforts predominantly focus on English language and the Western context, leaving a void for a reliable dataset that encapsulates India's unique socio-cultural nuances. To bridge this gap, we introduce IndiBias, a comprehensive benchmarking dataset designed specifically for evaluating social biases in the Indian context. We filter and translate the existing CrowS-Pairs dataset to create a benchmark dataset suited to the Indian context in Hindi language. Additionally, we leverage LLMs including ChatGPT and InstructGPT to augment our dataset with diverse societal biases and stereotypes prevalent in India. The included bias dimensions encompass gender, religion, caste, age, region, physical appearance, and occupation. We also build a resource to address intersectional biases along three intersectional dimensions. Our dataset contains 800 sentence pairs and 300 tuples for bias measurement across different demographics. The dataset is available in English and Hindi, providing a size comparable to existing benchmark datasets. Furthermore, using IndiBias we compare ten different language models on multiple bias measurement metrics. We observed that the language models exhibit more bias across a majority of the intersectional groups.
NormBank: A Knowledge Bank of Situational Social Norms
We present NormBank, a knowledge bank of 155k situational norms. This resource is designed to ground flexible normative reasoning for interactive, assistive, and collaborative AI systems. Unlike prior commonsense resources, NormBank grounds each inference within a multivalent sociocultural frame, which includes the setting (e.g., restaurant), the agents' contingent roles (waiter, customer), their attributes (age, gender), and other physical, social, and cultural constraints (e.g., the temperature or the country of operation). In total, NormBank contains 63k unique constraints from a taxonomy that we introduce and iteratively refine here. Constraints then apply in different combinations to frame social norms. Under these manipulations, norms are non-monotonic - one can cancel an inference by updating its frame even slightly. Still, we find evidence that neural models can help reliably extend the scope and coverage of NormBank. We further demonstrate the utility of this resource with a series of transfer experiments.
Bias Out-of-the-Box: An Empirical Analysis of Intersectional Occupational Biases in Popular Generative Language Models
The capabilities of natural language models trained on large-scale data have increased immensely over the past few years. Open source libraries such as HuggingFace have made these models easily available and accessible. While prior research has identified biases in large language models, this paper considers biases contained in the most popular versions of these models when applied `out-of-the-box' for downstream tasks. We focus on generative language models as they are well-suited for extracting biases inherited from training data. Specifically, we conduct an in-depth analysis of GPT-2, which is the most downloaded text generation model on HuggingFace, with over half a million downloads per month. We assess biases related to occupational associations for different protected categories by intersecting gender with religion, sexuality, ethnicity, political affiliation, and continental name origin. Using a template-based data collection pipeline, we collect 396K sentence completions made by GPT-2 and find: (i) The machine-predicted jobs are less diverse and more stereotypical for women than for men, especially for intersections; (ii) Intersectional interactions are highly relevant for occupational associations, which we quantify by fitting 262 logistic models; (iii) For most occupations, GPT-2 reflects the skewed gender and ethnicity distribution found in US Labor Bureau data, and even pulls the societally-skewed distribution towards gender parity in cases where its predictions deviate from real labor market observations. This raises the normative question of what language models should learn - whether they should reflect or correct for existing inequalities.
What's in a Name? Auditing Large Language Models for Race and Gender Bias
We employ an audit design to investigate biases in state-of-the-art large language models, including GPT-4. In our study, we prompt the models for advice involving a named individual across a variety of scenarios, such as during car purchase negotiations or election outcome predictions. We find that the advice systematically disadvantages names that are commonly associated with racial minorities and women. Names associated with Black women receive the least advantageous outcomes. The biases are consistent across 42 prompt templates and several models, indicating a systemic issue rather than isolated incidents. While providing numerical, decision-relevant anchors in the prompt can successfully counteract the biases, qualitative details have inconsistent effects and may even increase disparities. Our findings underscore the importance of conducting audits at the point of LLM deployment and implementation to mitigate their potential for harm against marginalized communities.
"We Need Structured Output": Towards User-centered Constraints on Large Language Model Output
Large language models can produce creative and diverse responses. However, to integrate them into current developer workflows, it is essential to constrain their outputs to follow specific formats or standards. In this work, we surveyed 51 experienced industry professionals to understand the range of scenarios and motivations driving the need for output constraints from a user-centered perspective. We identified 134 concrete use cases for constraints at two levels: low-level, which ensures the output adhere to a structured format and an appropriate length, and high-level, which requires the output to follow semantic and stylistic guidelines without hallucination. Critically, applying output constraints could not only streamline the currently repetitive process of developing, testing, and integrating LLM prompts for developers, but also enhance the user experience of LLM-powered features and applications. We conclude with a discussion on user preferences and needs towards articulating intended constraints for LLMs, alongside an initial design for a constraint prototyping tool.
How Realistic Is Your Synthetic Data? Constraining Deep Generative Models for Tabular Data
Deep Generative Models (DGMs) have been shown to be powerful tools for generating tabular data, as they have been increasingly able to capture the complex distributions that characterize them. However, to generate realistic synthetic data, it is often not enough to have a good approximation of their distribution, as it also requires compliance with constraints that encode essential background knowledge on the problem at hand. In this paper, we address this limitation and show how DGMs for tabular data can be transformed into Constrained Deep Generative Models (C-DGMs), whose generated samples are guaranteed to be compliant with the given constraints. This is achieved by automatically parsing the constraints and transforming them into a Constraint Layer (CL) seamlessly integrated with the DGM. Our extensive experimental analysis with various DGMs and tasks reveals that standard DGMs often violate constraints, some exceeding 95% non-compliance, while their corresponding C-DGMs are never non-compliant. Then, we quantitatively demonstrate that, at training time, C-DGMs are able to exploit the background knowledge expressed by the constraints to outperform their standard counterparts with up to 6.5% improvement in utility and detection. Further, we show how our CL does not necessarily need to be integrated at training time, as it can be also used as a guardrail at inference time, still producing some improvements in the overall performance of the models. Finally, we show that our CL does not hinder the sample generation time of the models.
Adaptable Moral Stances of Large Language Models on Sexist Content: Implications for Society and Gender Discourse
This work provides an explanatory view of how LLMs can apply moral reasoning to both criticize and defend sexist language. We assessed eight large language models, all of which demonstrated the capability to provide explanations grounded in varying moral perspectives for both critiquing and endorsing views that reflect sexist assumptions. With both human and automatic evaluation, we show that all eight models produce comprehensible and contextually relevant text, which is helpful in understanding diverse views on how sexism is perceived. Also, through analysis of moral foundations cited by LLMs in their arguments, we uncover the diverse ideological perspectives in models' outputs, with some models aligning more with progressive or conservative views on gender roles and sexism. Based on our observations, we caution against the potential misuse of LLMs to justify sexist language. We also highlight that LLMs can serve as tools for understanding the roots of sexist beliefs and designing well-informed interventions. Given this dual capacity, it is crucial to monitor LLMs and design safety mechanisms for their use in applications that involve sensitive societal topics, such as sexism.
Step-by-Step Mastery: Enhancing Soft Constraint Following Ability of Large Language Models
It is crucial for large language models (LLMs) to follow instructions that involve multiple constraints. However, it is an unexplored area to enhance LLMs' ability to follow soft constraints. To bridge the gap, we initially design a pipeline to construct datasets with high-quality outputs automatically. Additionally, to fully utilize the positive and negative samples generated during the data construction process, we choose Direct Preference Optimization (DPO) as the training method. Furthermore, taking into account the difficulty of soft constraints indicated by the number of constraints, we design a curriculum learning training paradigm based on the constraint quantity. We experimentally evaluate the effectiveness of our methods in improving LLMs' soft constraint following ability and analyze the factors driving the improvements.The datasets and code are publicly available at https://github.com/Rainier-rq/FollowSoftConstraint.
LIVS: A Pluralistic Alignment Dataset for Inclusive Public Spaces
We introduce the Local Intersectional Visual Spaces (LIVS) dataset, a benchmark for multi-criteria alignment of text-to-image (T2I) models in inclusive urban planning. Developed through a two-year participatory process with 30 community organizations, LIVS encodes diverse spatial preferences across 634 initial concepts, consolidated into six core criteria: Accessibility, Safety, Comfort, Invitingness, Inclusivity, and Diversity, through 37,710 pairwise comparisons. Using Direct Preference Optimization (DPO) to fine-tune Stable Diffusion XL, we observed a measurable increase in alignment with community preferences, though a significant proportion of neutral ratings highlights the complexity of modeling intersectional needs. Additionally, as annotation volume increases, accuracy shifts further toward the DPO-tuned model, suggesting that larger-scale preference data enhances fine-tuning effectiveness. LIVS underscores the necessity of integrating context-specific, stakeholder-driven criteria into generative modeling and provides a resource for evaluating AI alignment methodologies across diverse socio-spatial contexts.
Learning Shared Safety Constraints from Multi-task Demonstrations
Regardless of the particular task we want them to perform in an environment, there are often shared safety constraints we want our agents to respect. For example, regardless of whether it is making a sandwich or clearing the table, a kitchen robot should not break a plate. Manually specifying such a constraint can be both time-consuming and error-prone. We show how to learn constraints from expert demonstrations of safe task completion by extending inverse reinforcement learning (IRL) techniques to the space of constraints. Intuitively, we learn constraints that forbid highly rewarding behavior that the expert could have taken but chose not to. Unfortunately, the constraint learning problem is rather ill-posed and typically leads to overly conservative constraints that forbid all behavior that the expert did not take. We counter this by leveraging diverse demonstrations that naturally occur in multi-task settings to learn a tighter set of constraints. We validate our method with simulation experiments on high-dimensional continuous control tasks.
Evaluating and Mitigating Discrimination in Language Model Decisions
As language models (LMs) advance, interest is growing in applying them to high-stakes societal decisions, such as determining financing or housing eligibility. However, their potential for discrimination in such contexts raises ethical concerns, motivating the need for better methods to evaluate these risks. We present a method for proactively evaluating the potential discriminatory impact of LMs in a wide range of use cases, including hypothetical use cases where they have not yet been deployed. Specifically, we use an LM to generate a wide array of potential prompts that decision-makers may input into an LM, spanning 70 diverse decision scenarios across society, and systematically vary the demographic information in each prompt. Applying this methodology reveals patterns of both positive and negative discrimination in the Claude 2.0 model in select settings when no interventions are applied. While we do not endorse or permit the use of language models to make automated decisions for the high-risk use cases we study, we demonstrate techniques to significantly decrease both positive and negative discrimination through careful prompt engineering, providing pathways toward safer deployment in use cases where they may be appropriate. Our work enables developers and policymakers to anticipate, measure, and address discrimination as language model capabilities and applications continue to expand. We release our dataset and prompts at https://huggingface.co/datasets/Anthropic/discrim-eval
Near-Optimal Solutions of Constrained Learning Problems
With the widespread adoption of machine learning systems, the need to curtail their behavior has become increasingly apparent. This is evidenced by recent advancements towards developing models that satisfy robustness, safety, and fairness requirements. These requirements can be imposed (with generalization guarantees) by formulating constrained learning problems that can then be tackled by dual ascent algorithms. Yet, though these algorithms converge in objective value, even in non-convex settings, they cannot guarantee that their outcome is feasible. Doing so requires randomizing over all iterates, which is impractical in virtually any modern applications. Still, final iterates have been observed to perform well in practice. In this work, we address this gap between theory and practice by characterizing the constraint violation of Lagrangian minimizers associated with optimal dual variables, despite lack of convexity. To do this, we leverage the fact that non-convex, finite-dimensional constrained learning problems can be seen as parametrizations of convex, functional problems. Our results show that rich parametrizations effectively mitigate the issue of feasibility in dual methods, shedding light on prior empirical successes of dual learning. We illustrate our findings in fair learning tasks.
"Es geht um Respekt, nicht um Technologie": Erkenntnisse aus einem Interessensgruppen-übergreifenden Workshop zu genderfairer Sprache und Sprachtechnologie
With the increasing attention non-binary people receive in Western societies, strategies of gender-fair language have started to move away from binary (only female/male) concepts of gender. Nevertheless, hardly any approaches to take these identities into account into machine translation models exist so far. A lack of understanding of the socio-technical implications of such technologies risks further reproducing linguistic mechanisms of oppression and mislabelling. In this paper, we describe the methods and results of a workshop on gender-fair language and language technologies, which was led and organised by ten researchers from TU Wien, St. P\"olten UAS, FH Campus Wien and the University of Vienna and took place in Vienna in autumn 2021. A wide range of interest groups and their representatives were invited to ensure that the topic could be dealt with holistically. Accordingly, we aimed to include translators, machine translation experts and non-binary individuals (as "community experts") on an equal footing. Our analysis shows that gender in machine translation requires a high degree of context sensitivity, that developers of such technologies need to position themselves cautiously in a process still under social negotiation, and that flexible approaches seem most adequate at present. We then illustrate steps that follow from our results for the field of gender-fair language technologies so that technological developments can adequately line up with social advancements. ---- Mit zunehmender gesamtgesellschaftlicher Wahrnehmung nicht-bin\"arer Personen haben sich in den letzten Jahren auch Konzepte von genderfairer Sprache von der bisher verwendeten Binarit\"at (weiblich/m\"annlich) entfernt. Trotzdem gibt es bislang nur wenige Ans\"atze dazu, diese Identit\"aten in maschineller \"Ubersetzung abzubilden. Ein fehlendes Verst\"andnis unterschiedlicher sozio-technischer Implikationen derartiger Technologien birgt in sich die Gefahr, fehlerhafte Ansprachen und Bezeichnungen sowie sprachliche Unterdr\"uckungsmechanismen zu reproduzieren. In diesem Beitrag beschreiben wir die Methoden und Ergebnisse eines Workshops zu genderfairer Sprache in technologischen Zusammenh\"angen, der im Herbst 2021 in Wien stattgefunden hat. Zehn Forscher*innen der TU Wien, FH St. P\"olten, FH Campus Wien und Universit\"at Wien organisierten und leiteten den Workshop. Dabei wurden unterschiedlichste Interessensgruppen und deren Vertreter*innen breit gestreut eingeladen, um sicherzustellen, dass das Thema holistisch behandelt werden kann. Dementsprechend setzten wir uns zum Ziel, Machine-Translation-Entwickler*innen, \"Ubersetzer*innen, und nicht-bin\"are Privatpersonen (als "Lebenswelt-Expert*innen") gleichberechtigt einzubinden. Unsere Analyse zeigt, dass Geschlecht in maschineller \"Ubersetzung eine mageblich kontextsensible Herangehensweise erfordert, die Entwicklung von Sprachtechnologien sich vorsichtig in einem sich noch in Aushandlung befindlichen gesellschaftlichen Prozess positionieren muss, und flexible Ans\"atze derzeit am ad\"aquatesten erscheinen. Wir zeigen auf, welche n\"achsten Schritte im Bereich genderfairer Technologien notwendig sind, damit technische mit sozialen Entwicklungen mithalten k\"onnen.
mGeNTE: A Multilingual Resource for Gender-Neutral Language and Translation
Gender-neutral language reflects societal and linguistic shifts towards greater inclusivity by avoiding the implication that one gender is the norm over others. This is particularly relevant for grammatical gender languages, which heavily encode the gender of terms for human referents and over-relies on masculine forms, even when gender is unspecified or irrelevant. Language technologies are known to mirror these inequalities, being affected by a male bias and perpetuating stereotypical associations when translating into languages with extensive gendered morphology. In such cases, gender-neutral language can help avoid undue binary assumptions. However, despite its importance for creating fairer multi- and cross-lingual technologies, inclusive language research remains scarce and insufficiently supported in current resources. To address this gap, we present the multilingual mGeNTe dataset. Derived from the bilingual GeNTE (Piergentili et al., 2023), mGeNTE extends the original corpus to include the English-Italian/German/Spanish language pairs. Since each language pair is English-aligned with gendered and neutral sentences in the target languages, mGeNTE enables research in both automatic Gender-Neutral Translation (GNT) and language modelling for three grammatical gender languages.
Generalized Disparate Impact for Configurable Fairness Solutions in ML
We make two contributions in the field of AI fairness over continuous protected attributes. First, we show that the Hirschfeld-Gebelein-Renyi (HGR) indicator (the only one currently available for such a case) is valuable but subject to a few crucial limitations regarding semantics, interpretability, and robustness. Second, we introduce a family of indicators that are: 1) complementary to HGR in terms of semantics; 2) fully interpretable and transparent; 3) robust over finite samples; 4) configurable to suit specific applications. Our approach also allows us to define fine-grained constraints to permit certain types of dependence and forbid others selectively. By expanding the available options for continuous protected attributes, our approach represents a significant contribution to the area of fair artificial intelligence.
Awareness in Practice: Tensions in Access to Sensitive Attribute Data for Antidiscrimination
Organizations cannot address demographic disparities that they cannot see. Recent research on machine learning and fairness has emphasized that awareness of sensitive attributes, such as race and sex, is critical to the development of interventions. However, on the ground, the existence of these data cannot be taken for granted. This paper uses the domains of employment, credit, and healthcare in the United States to surface conditions that have shaped the availability of sensitive attribute data. For each domain, we describe how and when private companies collect or infer sensitive attribute data for antidiscrimination purposes. An inconsistent story emerges: Some companies are required by law to collect sensitive attribute data, while others are prohibited from doing so. Still others, in the absence of legal mandates, have determined that collection and imputation of these data are appropriate to address disparities. This story has important implications for fairness research and its future applications. If companies that mediate access to life opportunities are unable or hesitant to collect or infer sensitive attribute data, then proposed techniques to detect and mitigate bias in machine learning models might never be implemented outside the lab. We conclude that today's legal requirements and corporate practices, while highly inconsistent across domains, offer lessons for how to approach the collection and inference of sensitive data in appropriate circumstances. We urge stakeholders, including machine learning practitioners, to actively help chart a path forward that takes both policy goals and technical needs into account.