Papers
arxiv:2403.08192

MoleculeQA: A Dataset to Evaluate Factual Accuracy in Molecular Comprehension

Published on Mar 13
Authors:
,
,
,
,
,
,
,

Abstract

Large language models are playing an increasingly significant role in molecular research, yet existing models often generate erroneous information, posing challenges to accurate molecular comprehension. Traditional evaluation metrics for generated content fail to assess a model's accuracy in molecular understanding. To rectify the absence of factual evaluation, we present MoleculeQA, a novel question answering (QA) dataset which possesses 62K QA pairs over 23K molecules. Each QA pair, composed of a manual question, a positive option and three negative options, has consistent semantics with a molecular description from authoritative molecular corpus. MoleculeQA is not only the first benchmark for molecular factual bias evaluation but also the largest QA dataset for molecular research. A comprehensive evaluation on MoleculeQA for existing molecular LLMs exposes their deficiencies in specific areas and pinpoints several particularly crucial factors for molecular understanding.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2403.08192 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2403.08192 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2403.08192 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.