APT: Adaptive Pruning and Tuning Pretrained Language Models for Efficient Training and Inference

Published on Jan 22


Fine-tuning and inference with large Language Models (LM) are generally known to be expensive. Parameter-efficient fine-tuning over pretrained LMs reduces training memory by updating a small number of LM parameters but does not improve inference efficiency. Structured pruning improves LM inference efficiency by removing consistent parameter blocks, yet often increases training memory and time. To improve both training and inference efficiency, we introduce APT that adaptively prunes and tunes parameters for the LMs. At the early stage of fine-tuning, APT dynamically adds salient tuning parameters for fast and accurate convergence while discarding unimportant parameters for efficiency. Compared to baselines, our experiments show that APT maintains up to 98% task performance when pruning RoBERTa and T5 models with 40% parameters left while keeping 86.4% LLaMA models' performance with 70% parameters remained. Furthermore, APT speeds up LMs fine-tuning by up to 8x and reduces large LMs memory training footprint by up to 70%.


Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite in a model to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite in a dataset to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite in a Space to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.