Papers
arxiv:2401.10487

Generative Dense Retrieval: Memory Can Be a Burden

Published on Jan 19
Authors:
,
,
,
,
,
,

Abstract

Generative Retrieval (GR), autoregressively decoding relevant document identifiers given a query, has been shown to perform well under the setting of small-scale corpora. By memorizing the document corpus with model parameters, GR implicitly achieves deep interaction between query and document. However, such a memorizing mechanism faces three drawbacks: (1) Poor memory accuracy for fine-grained features of documents; (2) Memory confusion gets worse as the corpus size increases; (3) Huge memory update costs for new documents. To alleviate these problems, we propose the Generative Dense Retrieval (GDR) paradigm. Specifically, GDR first uses the limited memory volume to achieve inter-cluster matching from query to relevant document clusters. Memorizing-free matching mechanism from Dense Retrieval (DR) is then introduced to conduct fine-grained intra-cluster matching from clusters to relevant documents. The coarse-to-fine process maximizes the advantages of GR's deep interaction and DR's scalability. Besides, we design a cluster identifier constructing strategy to facilitate corpus memory and a cluster-adaptive negative sampling strategy to enhance the intra-cluster mapping ability. Empirical results show that GDR obtains an average of 3.0 R@100 improvement on NQ dataset under multiple settings and has better scalability.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2401.10487 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2401.10487 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2401.10487 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.