Developing and Evaluating Tiny to Medium-Sized Turkish BERT Models
Abstract
This study introduces and evaluates tiny, mini, small, and medium-sized uncased Turkish BERT models, aiming to bridge the research gap in less-resourced languages. We trained these models on a diverse dataset encompassing over 75GB of text from multiple sources and tested them on several tasks, including mask prediction, sentiment analysis, news classification, and, zero-shot classification. Despite their smaller size, our models exhibited robust performance, including zero-shot task, while ensuring computational efficiency and faster execution times. Our findings provide valuable insights into the development and application of smaller language models, especially in the context of the Turkish language.
Models citing this paper 10
Browse 10 models citing this paperDatasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper