Papers
arxiv:2005.09007

U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection

Published on May 18, 2020
Authors:
,
,
,
,
,

Abstract

In this paper, we design a simple yet powerful deep network architecture, U^2-Net, for salient object detection (SOD). The architecture of our U^2-Net is a two-level nested U-structure. The design has the following advantages: (1) it is able to capture more contextual information from different scales thanks to the mixture of receptive fields of different sizes in our proposed ReSidual U-blocks (RSU), (2) it increases the depth of the whole architecture without significantly increasing the computational cost because of the pooling operations used in these RSU blocks. This architecture enables us to train a deep network from scratch without using backbones from image classification tasks. We instantiate two models of the proposed architecture, U^2-Net (176.3 MB, 30 FPS on GTX 1080Ti GPU) and U^2-Net^{dagger} (4.7 MB, 40 FPS), to facilitate the usage in different environments. Both models achieve competitive performance on six SOD datasets. The code is available: https://github.com/NathanUA/U-2-Net.

Community

Sign up or log in to comment

Models citing this paper 1

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2005.09007 in a dataset README.md to link it from this page.

Spaces citing this paper 1

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.