Papers
arxiv:2005.05635

SKEP: Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis

Published on May 12, 2020
Authors:
,
,
,
,
,
,
,

Abstract

Recently, sentiment analysis has seen remarkable advance with the help of pre-training approaches. However, sentiment knowledge, such as sentiment words and aspect-sentiment pairs, is ignored in the process of pre-training, despite the fact that they are widely used in traditional sentiment analysis approaches. In this paper, we introduce Sentiment Knowledge Enhanced Pre-training (SKEP) in order to learn a unified sentiment representation for multiple sentiment analysis tasks. With the help of automatically-mined knowledge, SKEP conducts sentiment masking and constructs three sentiment knowledge prediction objectives, so as to embed sentiment information at the word, polarity and aspect level into pre-trained sentiment representation. In particular, the prediction of aspect-sentiment pairs is converted into multi-label classification, aiming to capture the dependency between words in a pair. Experiments on three kinds of sentiment tasks show that SKEP significantly outperforms strong pre-training baseline, and achieves new state-of-the-art results on most of the test datasets. We release our code at https://github.com/baidu/Senta.

Community

Sign up or log in to comment

Models citing this paper 3

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2005.05635 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2005.05635 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.