File size: 102,773 Bytes
b2d0708
 
 
 
 
 
 
 
 
 
 
c4a1562
 
 
b2d0708
c4a1562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2d0708
c4a1562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2d0708
c4a1562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2d0708
c4a1562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2d0708
c4a1562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2d0708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
---
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:26147930
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
    [YEAR_RANGE] 2020-2024 [TEXT] Vitamin B-6 Prevents Heart Failure with
    Preserved Ejection Fraction Through Downstream of Kinase 3 in a Mouse Model.
  sentences:
  - >-
    [YEAR_RANGE] 2020-2024 [TEXT] Colorectal cancer (CRC) is a complex and
    genetically heterogeneous disease presenting a specific metastatic pattern,
    with the liver being the most common site of metastasis. Around 20%-25% of
    patients with CRC will develop exclusively hepatic metastatic disease
    throughout their disease history. With its specific characteristics and
    therapeutic options, liver-limited disease (LLD) should be considered as a
    specific entity. The identification of these patients is particularly
    relevant in view of the growing interest in liver transplantation in
    selected patients with advanced CRC. Identifying why some patients will
    develop only LLD remains a challenge, mainly because of a lack of a systemic
    understanding of this complex and interlinked phenomenon given that cancer
    has traditionally been investigated according to distinct physiological
    compartments. Recently, multidisciplinary efforts and new diagnostic tools
    have made it possible to study some of these complex issues in greater depth
    and may help identify targets and specific treatment strategies to benefit
    these patients. In this review we analyze the underlying biology and
    available tools to help clinicians better understand this increasingly
    common and specific disease.
  - >-
    [YEAR_RANGE] 2020-2024 [TEXT] PURPOSE: Secondary breast cancer is a frequent
    late adverse event of mediastinal Hodgkin lymphoma radiotherapy. Secondary
    breast cancers overwhelmingly correspond to ductal carcinoma and develop
    from the glandular mammary tissue. In addition, during childhood, radiation
    overexposure of the glandular tissue may lead to a late breast hypotrophy at
    adult age. The aim of this study was to evaluate the radiation exposure to
    the glandular tissue in patients treated for mediastinal Hodgkin lymphoma
    with intensity-modulated proton therapy, in order to evaluate the potential
    dosimetric usefulness of its delineation for breast sparing. MATERIALS AND
    METHODS: Sixteen consecutive intermediate-risk mediastinal female patients
    with Hodgkin lymphoma treated with consolidation radiation with deep
    inspiration breath hold intensity-modulated proton therapy to the total dose
    of 30Gy were included. Breasts were delineated according to the European
    Society for Radiotherapy and Oncology guidelines for treatment optimization
    ("clinical organ at risk"). The glandular tissue ("glandular organ at risk")
    was retrospectively contoured on the initial simulation CT scans based on
    Hounsfield unit (HU) values, using a range between -80HU and 500HU. RESULTS:
    The mean and maximum doses delivered to the glandular organ at risk were
    significantly lower than the mean and maximum doses delivered to the
    clinical organ at risk, but were statistically correlated. Glandular organ
    at risk volumes were significantly smaller. CONCLUSION: Optimizing the
    treatment plans on the clinical breast contours will systematically lead to
    overestimation of the dose received to the glandular tissue and,
    consequently, to an indistinct and involuntary improved glandular tissue
    sparing. As such, our findings do not support the consideration of the
    glandular tissue as an additional organ at risk when planning
    intensity-modulated proton therapy for mediastinal Hodgkin lymphoma in
    female patients.
  - >-
    [YEAR_RANGE] 2020-2024 [TEXT] BACKGROUND: There is an urgent need to develop
    an efficient therapeutic strategy for heart failure with preserved ejection
    fraction (HFpEF), which is mediated by phenotypic changes in cardiac
    macrophages. We previously reported that vitamin B-6 inhibits
    macrophage-mediated inflammasome activation. OBJECTIVES: We sought to
    examine whether the prophylactic use of vitamin B-6 prevents HFpEF. METHODS:
    HFpEF model was elicited by a combination of high-fat diet and
    Nω-nitro-l-arginine methyl ester supplement in mice. Cardiac function was
    assessed using conventional echocardiography and Doppler imaging.
    Immunohistochemistry and immunoblotting were used to detect changes in the
    macrophage phenotype and myocardial remodeling-related molecules. RESULTS:
    Co-administration of vitamin B-6 with HFpEF mice mitigated HFpEF phenotypes,
    including diastolic dysfunction, cardiac macrophage phenotypic shifts,
    fibrosis, and hypertrophy. Echocardiographic improvements were observed,
    with the E/E' ratio decreasing from 42.0 to 21.6 and the E/A ratio improving
    from 2.13 to 1.17. The exercise capacity also increased from 295.3 to 657.7
    min. However, these beneficial effects were negated in downstream of kinase
    (DOK) 3-deficient mice. Mechanistically, vitamin B-6 increased DOK3 protein
    concentrations and inhibited macrophage phenotypic changes, which were
    abrogated by an AMP-activated protein kinase inhibitor. CONCLUSIONS: Vitamin
    B-6 increases DOK3 signaling to lower risk of HFpEF by inhibiting phenotypic
    changes in cardiac macrophages.
- source_sentence: >-
    [YEAR_RANGE] 2020-2024 [TEXT] Resolving phylogenetic relationships and
    taxonomic revision in the Pseudogastromyzon (Cypriniformes, Gastromyzonidae)
    genus: molecular and morphological evidence for a new genus,
    Labigastromyzon.
  sentences:
  - >-
    [YEAR_RANGE] 2020-2024 [TEXT] Bats contain a diverse spectrum of viral
    species in their bodies. The RNA virus family Paramyxoviridae tends to
    infect several vertebrate species, which are accountable for a variety of
    devastating infections in both humans and animals. Viruses of this kind
    include measles, mumps, and Hendra. Some synonymous codons are favoured over
    others in mRNAs during gene-to-protein synthesis process. Such phenomenon is
    termed as codon usage bias (CUB). Our research emphasized many aspects that
    shape the CUB of genes in the Paramyxoviridae family found in bats. Here,
    the nitrogenous base A occurred the most. AT was found to be abundant in the
    coding sequences of the Paramyxoviridae family. RSCU data revealed that A or
    T ending codons occurred more frequently than predicted. Furthermore, 3
    overrepresented codons (CAT, AGA, and GCA) and 7 underrepresented codons
    (CCG, TCG, CGC, CGG, CGT, GCG and ACG) were detected in the viral genomes.
    Correspondence analysis, neutrality plot, and parity plots highlight the
    combined impact of mutational pressure and natural selection on CUB. The
    neutrality plot of GC12 against GC3 yielded a regression coefficient value
    of 0.366, indicating that natural selection had a significant (63.4 %)
    impact. Moreover, RNA editing analysis was done, which revealed the highest
    frequency of C to T mutations. The results of our research revealed the
    pattern of codon usage and RNA editing sites in Paramyxoviridae genomes.
  - >-
    [YEAR_RANGE] 2020-2024 [TEXT] OBJECTIVE: The preoperative inclination angle
    of mandibular incisors was crucial for surgical and postoperative stability
    while the effect of proclined mandibular incisors on skeletal stability has
    not been investigated. This study aimed to evaluate the effects of
    differences in presurgical mandibular incisor inclination on skeletal
    stability after orthognathic surgery in patients with skeletal Class III
    malocclusion. METHODS: A retrospective cohort study of 80 consecutive
    patients with skeletal Class III malocclusion who underwent bimaxillary
    orthognathic surgery was conducted. According to incisor mandibular plane
    angle (IMPA), patients were divided into 3 groups: retroclined inclination
    (IMPA < 87°), normal inclination (87° ≤ IMPA < 93°) and proclined
    inclination (IMPA ≥ 93°). Preoperative characteristics, surgical changes and
    postoperative stability were compared based on lateral cephalograms obtained
    1 week before surgery (T0), 1 week after surgery (T1), and at 6 to 12 months
    postoperatively (T2). RESULTS: The mandible demonstrated a forward and
    upward relapse in all three groups. No significant differences in skeletal
    relapse were observed in the 3 groups of patients. However, the proclined
    inclination group showed a negative overbite tendency postoperatively
    compared with the other two groups and a clinically significant mandibular
    relapse pattern. Proclined IMPA both pre- and postoperatively was correlated
    with mandibular relapse. CONCLUSION: Sufficient presurgical mandibular
    incisor decompensation was of crucial importance for the maintenance of
    skeletal stability in patients with skeletal Class III malocclusion who
    subsequently underwent orthognathic surgery.
  - >-
    [YEAR_RANGE] 2020-2024 [TEXT] The Pseudogastromyzon genus, consisting of
    species predominantly distributed throughout southeastern China, has
    garnered increasing market attention in recent years due to its ornamental
    appeal. However, the overlapping diagnostic attributes render the commonly
    accepted criteria for interspecific identification unreliable, leaving the
    phylogenetic relationships among Pseudogastromyzon species unexplored. In
    the present study, we undertake molecular phylogenetic and morphological
    examinations of the Pseudogastromyzon genus. Our phylogenetic analysis of
    mitochondrial genes distinctly segregated Pseudogastromyzon species into two
    clades: the Pseudogastromyzon clade and the Labigastromyzon clade. A
    subsequent morphological assessment revealed that the primary dermal ridge
    (specifically, the second ridge) within the labial adhesive apparatus serves
    as an effective and precise interspecific diagnostic characteristic.
    Moreover, the distributional ranges of Pseudogastromyzon and Labigastromyzon
    are markedly distinct, exhibiting only a narrow area of overlap. Considering
    the morphological heterogeneity of the labial adhesive apparatus and the
    substantial division within the molecular phylogeny, we advocate for the
    elevation of the Labigastromyzon subgenus to the status of a separate genus.
    Consequently, we have ascertained the validity of the Pseudogastromyzon and
    Labigastromyzon species, yielding a total of six valid species. To
    facilitate future research, we present comprehensive descriptions of the
    redefined species and introduce novel identification keys.
- source_sentence: >-
    [YEAR_RANGE] 2020-2024 [TEXT] PCa-RadHop: A transparent and lightweight
    feed-forward method for clinically significant prostate cancer segmentation.
  sentences:
  - >-
    [YEAR_RANGE] 2020-2024 [TEXT] According to the importance of time in
    treatment of thrombosis disorders, faster than current treatments are
    required. For the first time, this research discloses a novel strategy for
    rapid dissolution of blood clots by encapsulation of a fibrinolytic
    (Reteplase) into a Thrombin sensitive shell formed by polymerization of
    acrylamide monomers and bisacryloylated peptide as crosslinker.
    Degradability of the peptide units in exposure to Thrombin, creates the
    Thrombin-sensitive Reteplase nanocapsules (TSRNPs) as a triggered release
    system. Accelerated thrombolysis was achieved by combining three approaches
    including: deep penetration of TSRNPs into the blood clots, changing the
    clot dissolution mechanism by altering the distribution pattern of TSRNPs to
    3D intra-clot distribution (based on the distributed intra-clot thrombolysis
    (DIT) model) instead of peripheral and unidirectional distribution of
    unencapsulated fibrinolytics and, enzyme-stimulated release of the
    fibrinolytic. Ex-vivo study was carried out by an occluded tube model that
    mimics in-vivo brain stroke as an emergency situation where faster treatment
    in short time is a golden key. In in vivo, efficacy of the developed
    formulation was confirmed by PET scan and laser Doppler flowmetry (LDF). As
    the most important achievements, 40.0 ± 0.7 (n = 3) % and 37.0 ± 0.4 (n = 3)
    % reduction in the thrombolysis time (faster reperfusion) were observed by
    ex-vivo and in-vivo experiments, respectively. Higher blood flow and larger
    digestion mass of clot at similar times in comparison to non-encapsulated
    Reteplase were observed that means more effective thrombolysis by the
    developed strategy.
  - >-
    [YEAR_RANGE] 2020-2024 [TEXT] Prostate Cancer is one of the most frequently
    occurring cancers in men, with a low survival rate if not early diagnosed.
    PI-RADS reading has a high false positive rate, thus increasing the
    diagnostic incurred costs and patient discomfort. Deep learning (DL) models
    achieve a high segmentation performance, although require a large model size
    and complexity. Also, DL models lack of feature interpretability and are
    perceived as "black-boxes" in the medical field. PCa-RadHop pipeline is
    proposed in this work, aiming to provide a more transparent feature
    extraction process using a linear model. It adopts the recently introduced
    Green Learning (GL) paradigm, which offers a small model size and low
    complexity. PCa-RadHop consists of two stages: Stage-1 extracts data-driven
    radiomics features from the bi-parametric Magnetic Resonance Imaging
    (bp-MRI) input and predicts an initial heatmap. To reduce the false positive
    rate, a subsequent stage-2 is introduced to refine the predictions by
    including more contextual information and radiomics features from each
    already detected Region of Interest (ROI). Experiments on the largest
    publicly available dataset, PI-CAI, show a competitive performance standing
    of the proposed method among other deep DL models, achieving an area under
    the curve (AUC) of 0.807 among a cohort of 1,000 patients. Moreover,
    PCa-RadHop maintains orders of magnitude smaller model size and complexity.
  - >-
    [YEAR_RANGE] 2020-2024 [TEXT] OBJECTIVE: To evaluate rates of remission,
    recovery, relapse, and recurrence in suicidal youth who participated in a
    clinical trial comparing Dialectical Behavior Therapy (DBT) and Individual
    and Group Supportive Therapy (IGST). METHOD: Participants were 173 youth,
    aged 12 to 18 years, with repetitive self-harm (including at least 1 prior
    suicide attempt [SA]) and elevated suicidal ideation (SI). Participants
    received 6 months of DBT or IGST and were followed for 6 months
    post-treatment. The sample was 95% female, 56.4% White, and 27.49% Latina.
    Remission was defined as absence of SA or nonsuicidal self-injury (NSSI)
    across one 3-month interval; recovery was defined across 2 or more
    consecutive intervals. Relapse and recurrence were defined as SA or NSSI
    following remission or recovery. Cross-tabulation with χ2 was used for
    between-group contrasts. RESULTS: Over 70% of the sample reported remission
    of SA at each treatment and follow-up interval. There were significantly
    higher rates of remission and recovery and lower rates of relapse and
    recurrence for SA in DBT than for IGST. Across treatments and time points,
    SA had higher remission and recovery rates and lower relapse and recurrence
    rates than NSSI. There were no significant differences in NSSI remission
    between conditions; however, participants receiving DBT had significantly
    higher NSSI recovery rates than those receiving IGST for the 3- to 9-month,
    3- to 12-month, and 6- to 12-month intervals. CONCLUSION: Results showed
    higher percentages of SA remission and recovery for DBT as compared to IGST.
    NSSI was less likely to remit than SA. PLAIN LANGUAGE SUMMARY: This study
    examined rates of remission, recovery, relapse, and recurrence of suicide
    attempts (SA) and nonsuicidal self-injury (NSSI) among the participants in
    the CARES Study, a randomized clinical trial of 6 months of Dialectical
    Behavior Therapy or Individual and Group Supportive Therapy. 173 youth aged
    12 to 18 years participated in the study and were followed for 6 months post
    treatment. Over 70% of the sample reported remission of SA at each treatment
    and follow-up interval. There were significantly higher rates of remission
    and recovery and lower rates of relapse and recurrence for SA among
    participants who received Dialectical Behavioral Therapy. Across both
    treatments, remission and recovery rates were lower and relapse and
    recurrence rates were higher for NSSI than for SA. These results underscore
    the value of Dialectical Behavioral Therapy as a first line treatment for
    youth at high risk for suicide. DIVERSITY & INCLUSION STATEMENT: We worked
    to ensure race, ethnic, and/or other types of diversity in the recruitment
    of human participants. CLINICAL TRIAL REGISTRATION INFORMATION:
    Collaborative Adolescent Research on Emotions and Suicide (CARES);
    https://www. CLINICALTRIALS: gov/; NCT01528020.
- source_sentence: >-
    [YEAR_RANGE] 2020-2024 [TEXT] Predicting Recovery After Concussion in
    Pediatric Patients: A Meta-Analysis.
  sentences:
  - >-
    [YEAR_RANGE] 2020-2024 [TEXT] OBJECTIVE: The authors examined licensing
    requirements for select children's behavioral health care providers.
    METHODS: Statutes and regulations as of October 2021 were reviewed for
    licensed clinical social workers, licensed professional counselors, and
    licensed marriage and family therapists for all 50 U.S. states and the
    District of Columbia. RESULTS: All jurisdictions had laws regarding
    postgraduate training and license portability. No jurisdiction included
    language about specialized postgraduate training related to serving children
    and families or cultural competence. Other policies that related to the
    structure, composition, and authority of licensing boards varied across
    states and licensure types. CONCLUSIONS: In their efforts to address
    barriers to licensure, expand the workforce, and ensure that children have
    access to high-quality and culturally responsive care, states could consider
    their statutes and regulations.
  - >-
    [YEAR_RANGE] 2020-2024 [TEXT] Magnetic Resonance Imaging (MRI) plays a
    pivotal role in the accurate measurement of brain subcortical structures in
    macaques, which is crucial for unraveling the complexities of brain
    structure and function, thereby enhancing our understanding of
    neurodegenerative diseases and brain development. However, due to
    significant differences in brain size, structure, and imaging
    characteristics between humans and macaques, computational tools developed
    for human neuroimaging studies often encounter obstacles when applied to
    macaques. In this context, we propose an Anatomy Attentional Fusion Network
    (AAF-Net), which integrates multimodal MRI data with anatomical constraints
    in a multi-scale framework to address the challenges posed by the dynamic
    development, regional heterogeneity, and age-related size variations of the
    juvenile macaque brain, thus achieving precise subcortical segmentation.
    Specifically, we generate a Signed Distance Map (SDM) based on the initial
    rough segmentation of the subcortical region by a network as an anatomical
    constraint, providing comprehensive information on positions, structures,
    and morphology. Then we construct AAF-Net to fully fuse the SDM anatomical
    constraints and multimodal images for refined segmentation. To thoroughly
    evaluate the performance of our proposed tool, over 700 macaque MRIs from 19
    datasets were used in this study. Specifically, we employed two manually
    labeled longitudinal macaque datasets to develop the tool and complete
    four-fold cross-validations. Furthermore, we incorporated various external
    datasets to demonstrate the proposed tool's generalization capabilities and
    promise in brain development research. We have made this tool available as
    an open-source resource at
    https://github.com/TaoZhong11/Macaque_subcortical_segmentation for direct
    application.
  - >-
    [YEAR_RANGE] 2020-2024 [TEXT] CONTEXT: Prognostic prediction models (PPMs)
    can help clinicians predict outcomes. OBJECTIVE: To critically examine
    peer-reviewed PPMs predicting delayed recovery among pediatric patients with
    concussion. DATA SOURCES: Ovid Medline, Embase, Ovid PsycInfo, Web of
    Science Core Collection, Cumulative Index to Nursing and Allied Health
    Literature, Cochrane Library, Google Scholar. STUDY SELECTION: The study had
    to report a PPM for pediatric patients to be used within 28 days of injury
    to estimate risk of delayed recovery at 28 days to 1 year postinjury.
    Studies had to have at least 30 participants. DATA EXTRACTION: The Critical
    Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling
    Studies checklist was completed. RESULTS: Six studies of 13 PPMs were
    included. These studies primarily reflected male patients in late childhood
    or early adolescence presenting to an emergency department meeting the
    Concussion in Sport Group concussion criteria. No study authors used the
    same outcome definition nor evaluated the clinical utility of a model. All
    studies demonstrated high risk of bias. Quality of evidence was best for the
    Predicting and Preventing Postconcussive Problems in Pediatrics (5P)
    clinical risk score. LIMITATIONS: No formal PPM Grading of Recommendations,
    Assessment, Development, and Evaluations (GRADE) process exists.
    CONCLUSIONS: The 5P clinical risk score may be considered for clinical use.
    Rigorous external validations, particularly in other settings, are needed.
    The remaining PPMs require external validation. Lack of consensus regarding
    delayed recovery criteria limits these PPMs.
- source_sentence: >-
    [YEAR_RANGE] 2020-2024 [TEXT] Intraoperative Monitoring of the External
    Urethral Sphincter Reflex: A Novel Adjunct to Bulbocavernosus Reflex
    Neuromonitoring for Protecting the Sacral Neural Pathways Responsible for
    Urination, Defecation and Sexual Function.
  sentences:
  - >-
    [YEAR_RANGE] 2020-2024 [TEXT] Early menarche has been associated with
    adverse health outcomes, such as depressive symptoms. Discovering effect
    modifiers across these conditions in the pediatric population is a constant
    challenge. We tested whether movement behaviours modified the effect of the
    association between early menarche and depression symptoms among
    adolescents. This cross-sectional study included 2031 females aged 15-19
    years across all Brazilian geographic regions. Data were collected using a
    self-administered questionnaire; 30.5% (n = 620) reported having experienced
    menarche before age 12 years (that is, early menarche). We used the Patient
    Health Questionnaire (PHQ-9) to evaluate depressive symptoms. Accruing any
    moderate-vigorous physical activity during leisure time, limited
    recreational screen time, and having good sleep quality were the exposures
    investigated. Adolescents who experienced early menarche and met one (B:
    -4.45, 95% CI: (-5.38, -3.51)), two (B: -6.07 (-7.02, -5.12)), or three (B:
    -6.49 (-7.76, -5.21)), and adolescents who experienced not early menarche
    and met one (B: -5.33 (-6.20; -4.46)), two (B: -6.12 (-6.99; -5.24)), or
    three (B: -6.27 (-7.30; -5.24)) of the movement behaviour targets had lower
    PHQ-9 scores for depression symptoms than adolescents who experienced early
    menarche and did not meet any of the movement behaviours. The disparities in
    depressive symptoms among the adolescents (early menarche versus not early
    menarche) who adhered to all three target behaviours were not statistically
    significant (B: 0.41 (-0.19; 1.01)). Adherence to movement behaviours
    modified the effect of the association between early menarche and depression
    symptoms.
  - >-
    [YEAR_RANGE] 2020-2024 [TEXT] PURPOSE: Intraoperative bulbocavernosus reflex
    neuromonitoring has been utilized to protect bowel, bladder, and sexual
    function, providing a continuous functional assessment of the somatic sacral
    nervous system during surgeries where it is at risk. Bulbocavernosus reflex
    data may also provide additional functional insight, including an evaluation
    for spinal shock, distinguishing upper versus lower motor neuron injury
    (conus versus cauda syndromes) and prognosis for postoperative bowel and
    bladder function. Continuous intraoperative bulbocavernosus reflex
    monitoring has been utilized to provide the surgeon with an ongoing
    functional assessment of the anatomical elements involved in the S2-S4
    mediated reflex arc including the conus, cauda equina and pudendal nerves.
    Intraoperative bulbocavernosus reflex monitoring typically includes the
    electrical activation of the dorsal nerves of the genitals to initiate the
    afferent component of the reflex, followed by recording the resulting muscle
    response using needle electromyography recordings from the external anal
    sphincter. METHODS: Herein we describe a complementary and novel technique
    that includes recording electromyography responses from the external
    urethral sphincter to monitor the external urethral sphincter reflex.
    Specialized foley catheters embedded with recording electrodes have recently
    become commercially available that provide the ability to perform
    intraoperative external urethral sphincter muscle recordings. RESULTS: We
    describe technical details and the potential utility of incorporating
    external urethral sphincter reflex recordings into existing sacral
    neuromonitoring paradigms to provide redundant yet complementary data
    streams. CONCLUSIONS: We present two illustrative neurosurgical oncology
    cases to demonstrate the utility of the external urethral sphincter reflex
    technique in the setting of the necessary surgical sacrifice of sacral nerve
    roots.
  - >-
    [YEAR_RANGE] 2020-2024 [TEXT] BACKGROUND: Limited data are available on the
    appropriate choice of blood pressure management strategy for patients with
    acute basilar artery occlusion assessed by the standard deviation (SD).
    Multivariate logistic models were used to investigate the association
    between BPV, the primary outcome (futile recanalization, 90-day modified
    Rankin Scale score 3-6), and the secondary outcome (30-day mortality).
    Subgroup analysis was performed as a sensitivity test. RESULTS: Futile
    recanalization occurred in 60 (56 %) patients, while 26 (24 %) patients died
    within 30 days. In the fully adjusted model, MAP SD was associated with a
    higher risk of futile recanalization (OR adj=1.36, per 1 mmHg increase, 95 %
    CI: 1.09-1.69, P=0.006) and 30-day mortality (OR adj=1.56, per 1 mmHg
    increase, 95 % CI: 1.20-2.04, P=0.001). A significant interaction between
    MAP SD and the lack of hypertension history on futile recanalization
    (P<0.05) was observed. CONCLUSIONS: Among recanalized acute BAO ischemic
    patients, higher blood pressure variability during the first 24 h after MT
    was associated with worse outcomes. This association was stronger in
    patients without a history of hypertension.
base_model:
- pankajrajdeo/UMLS-ED-Bioformer-16L-V-1.25-SpecialTokensUntrained
---

# SentenceTransformer

This is a [sentence-transformers](https://www.SBERT.net) model trained on the parquet dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 1024 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - parquet
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("pankajrajdeo/UMLS-Pubmed-ST-TCE-Epoch-4")
# Run inference
sentences = [
    '[YEAR_RANGE] 2020-2024 [TEXT] Intraoperative Monitoring of the External Urethral Sphincter Reflex: A Novel Adjunct to Bulbocavernosus Reflex Neuromonitoring for Protecting the Sacral Neural Pathways Responsible for Urination, Defecation and Sexual Function.',
    '[YEAR_RANGE] 2020-2024 [TEXT] PURPOSE: Intraoperative bulbocavernosus reflex neuromonitoring has been utilized to protect bowel, bladder, and sexual function, providing a continuous functional assessment of the somatic sacral nervous system during surgeries where it is at risk. Bulbocavernosus reflex data may also provide additional functional insight, including an evaluation for spinal shock, distinguishing upper versus lower motor neuron injury (conus versus cauda syndromes) and prognosis for postoperative bowel and bladder function. Continuous intraoperative bulbocavernosus reflex monitoring has been utilized to provide the surgeon with an ongoing functional assessment of the anatomical elements involved in the S2-S4 mediated reflex arc including the conus, cauda equina and pudendal nerves. Intraoperative bulbocavernosus reflex monitoring typically includes the electrical activation of the dorsal nerves of the genitals to initiate the afferent component of the reflex, followed by recording the resulting muscle response using needle electromyography recordings from the external anal sphincter. METHODS: Herein we describe a complementary and novel technique that includes recording electromyography responses from the external urethral sphincter to monitor the external urethral sphincter reflex. Specialized foley catheters embedded with recording electrodes have recently become commercially available that provide the ability to perform intraoperative external urethral sphincter muscle recordings. RESULTS: We describe technical details and the potential utility of incorporating external urethral sphincter reflex recordings into existing sacral neuromonitoring paradigms to provide redundant yet complementary data streams. CONCLUSIONS: We present two illustrative neurosurgical oncology cases to demonstrate the utility of the external urethral sphincter reflex technique in the setting of the necessary surgical sacrifice of sacral nerve roots.',
    '[YEAR_RANGE] 2020-2024 [TEXT] Early menarche has been associated with adverse health outcomes, such as depressive symptoms. Discovering effect modifiers across these conditions in the pediatric population is a constant challenge. We tested whether movement behaviours modified the effect of the association between early menarche and depression symptoms among adolescents. This cross-sectional study included 2031 females aged 15-19 years across all Brazilian geographic regions. Data were collected using a self-administered questionnaire; 30.5% (n = 620) reported having experienced menarche before age 12 years (that is, early menarche). We used the Patient Health Questionnaire (PHQ-9) to evaluate depressive symptoms. Accruing any moderate-vigorous physical activity during leisure time, limited recreational screen time, and having good sleep quality were the exposures investigated. Adolescents who experienced early menarche and met one (B: -4.45, 95% CI: (-5.38, -3.51)), two (B: -6.07 (-7.02, -5.12)), or three (B: -6.49 (-7.76, -5.21)), and adolescents who experienced not early menarche and met one (B: -5.33 (-6.20; -4.46)), two (B: -6.12 (-6.99; -5.24)), or three (B: -6.27 (-7.30; -5.24)) of the movement behaviour targets had lower PHQ-9 scores for depression symptoms than adolescents who experienced early menarche and did not meet any of the movement behaviours. The disparities in depressive symptoms among the adolescents (early menarche versus not early menarche) who adhered to all three target behaviours were not statistically significant (B: 0.41 (-0.19; 1.01)). Adherence to movement behaviours modified the effect of the association between early menarche and depression symptoms.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### parquet

* Dataset: parquet
* Size: 26,147,930 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                              | positive                                                                              |
  |:--------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                                |
  | details | <ul><li>min: 16 tokens</li><li>mean: 45.85 tokens</li><li>max: 137 tokens</li></ul> | <ul><li>min: 31 tokens</li><li>mean: 307.52 tokens</li><li>max: 1024 tokens</li></ul> |
* Samples:
  | anchor                                                                                       | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
  |:---------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>[YEAR_RANGE] 1880-1884 [TEXT] ADDRESS OF COL. GARRICK MALLERY, U. S. ARMY.</code>      | <code>[YEAR_RANGE] 1880-1884 [TEXT] It may be conceded that after man had all his present faculties, he did not choose between the adoption of voice and gesture, and never with those faculties, was in a state where the one was used, to the absolute exclusion of the other. The epoch, however, to which our speculations relate is that in which he had not reached the present symmetric development of his intellect and of his bodily organs, and the inquiry is: Which mode of communication was earliest adopted to his single wants and informed intelligence? With the voice he could imitate distinictively but few sounds of nature, while with gesture he could exhibit actions, motions, positions, forms, dimensions, directions and distances, with their derivations and analogues. It would seem from this unequal division of capacity that oral speech remained rudimentary long after gesture had become an efficient mode of communication. With due allowance for all purely imitative sounds, and for the spontaneous action of vocal organs under excitement, it appears that the connection between ideas and words is only to be explained by a compact between speaker and hearer which supposes the existence of a prior mode of communication. This was probably by gesture. At least we may accept it as a clew leading out of the labyrinth of philological confusion, and regulating the immemorial quest of man's primitive speech.</code> |
  | <code>[YEAR_RANGE] 1880-1884 [TEXT] How TO OBTAIN THE BRAIN OF THE CAT.</code>               | <code>[YEAR_RANGE] 1880-1884 [TEXT] How to obtain the Brain of the Cat, (Wilder).-Correction: Page 158, second column, line 7, "grains," should be "grams;" page 159, near middle of 2nd column, "successily," should be "successively;" page 161, the number of Flower's paper is 3.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
  | <code>[YEAR_RANGE] 1880-1884 [TEXT] DOLBEAR ON THE NATURE AND CONSTITUTION OF MATTER.</code> | <code>[YEAR_RANGE] 1880-1884 [TEXT] Mr. Dopp desires to make the following correction in his paper in the last issue: "In my article on page 200 of "Science", the expression and should have been and being the velocity of light.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Evaluation Dataset

#### parquet

* Dataset: parquet
* Size: 26,147,930 evaluation samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | positive                                                                             |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 15 tokens</li><li>mean: 31.78 tokens</li><li>max: 78 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 303.03 tokens</li><li>max: 835 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                    | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>[YEAR_RANGE] 2020-2024 [TEXT] Solubility and thermodynamics of mesalazine in aqueous mixtures of poly ethylene glycol 200/600 at 293.2-313.2K.</code>               | <code>[YEAR_RANGE] 2020-2024 [TEXT] In this study, the solubility of mesalazine was investigated in binary solvent mixtures of poly ethylene glycols 200/600 and water at temperatures ranging from 293.2K to 313.2K. The solubility of mesalazine was determined using a shake-flask method, and its concentrations were measured using a UV-Vis spectrophotometer. The obtained solubility data were analyzed using mathematical models including the van't Hoff, Jouyban-Acree, Jouyban-Acree-van't Hoff, mixture response surface, and modified Wilson models. The experimental data obtained for mesalazine dissolution encompassed various thermodynamic properties, including ΔG°, ΔH°, ΔS°, and TΔS°. These properties offer valuable insights into the energetic aspects of the dissolution process and were calculated based on the van't Hoff equation.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
  | <code>[YEAR_RANGE] 2020-2024 [TEXT] Safety and efficacy of remimazolam versus propofol during EUS: a multicenter randomized controlled study.</code>                      | <code>[YEAR_RANGE] 2020-2024 [TEXT] BACKGROUND AND AIMS: Propofol, a widely used sedative in GI endoscopic procedures, is associated with cardiorespiratory suppression. Remimazolam is a novel ultrashort-acting benzodiazepine sedative with rapid onset and minimal cardiorespiratory depression. This study compared the safety and efficacy of remimazolam and propofol during EUS procedures. METHODS: A multicenter randomized controlled study was conducted between October 2022 and March 2023 in patients who underwent EUS procedures. Patients were randomly assigned to receive either remimazolam or propofol as a sedative agent. The primary endpoint was cardiorespiratory adverse events.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
  | <code>[YEAR_RANGE] 2020-2024 [TEXT] Ultrasound-Guided Vs Non-Guided Prolotherapy for Internal Derangement of Temporomandibular Joint. A Randomized Clinical Trial.</code> | <code>[YEAR_RANGE] 2020-2024 [TEXT] OBJECTIVES: This randomized clinical trial study aims to compare ultrasound-guided versus non-guided Dextrose 10% injections in patients suffering from internal derangement in the temporomandibular joint (TMJ). MATERIAL AND METHODS: The study population included 22 patients and 43 TMJs suffering from unilateral or bilateral TMJ painful clicking, magnetic resonance imaging (MRI) proved disc displacement with reduction (DDWR), refractory to or failed conservative treatment. The patients were divided randomly into two groups (non-guided and ultrasound (US)-guided groups). The procedure involved injection of 2 mL solution of a mixture of 0.75 mL 0.9% normal saline solution, 0.3 mL 2% lidocaine and 0.75 mL dextrose 10% using a 25G needle in the joint and 1 mL intramuscular injection to the masseter muscle at the most tender point. The Visual Analogue Score (VAS) was used to compare joint pain intensity over four different periods, beginning with pre-injection, 1-, 2-, and 6-months postinjection. RESULTS: Twenty-two patients 5 males (n = 5/22, 22.7%) and 17 females (n = 17/22, 77.2%) were included in this study. The mean age was 27.3 ± 7.4 years (30.2 ± 7.0) for the non-guided group and 24.3 ± 6.9 for the US-guided group. The dextrose injection reduced intensity over time in both groups with statistically significant improvement (P value <.05) at 2 and 6 months in both groups. There was no statistically significant difference in VAS assessment between both groups. CONCLUSION: Intra-articular injection of dextrose 10% for patients with painful clicking and DDWR resulted in reduced pain intensity in both US-guided and non-guided groups with significant symptomatic improvement over time in both groups. US guidance allowed accurate anatomical localization and safe procedure with a single joint puncture.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `max_steps`: 970330
- `log_level`: info
- `fp16`: True
- `dataloader_num_workers`: 16
- `load_best_model_at_end`: True
- `resume_from_checkpoint`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: 970330
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: info
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 16
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: True
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step   | Training Loss | Validation Loss |
|:------:|:------:|:-------------:|:---------------:|
| 0.0000 | 1      | 4.7032        | -               |
| 0.0052 | 1000   | 0.6304        | -               |
| 0.0103 | 2000   | 0.1763        | -               |
| 0.0155 | 3000   | 0.1602        | -               |
| 0.0206 | 4000   | 0.1494        | -               |
| 0.0258 | 5000   | 0.1122        | -               |
| 0.0309 | 6000   | 0.1225        | -               |
| 0.0361 | 7000   | 0.1059        | -               |
| 0.0412 | 8000   | 0.1002        | -               |
| 0.0464 | 9000   | 0.0988        | -               |
| 0.0515 | 10000  | 0.1148        | -               |
| 0.0567 | 11000  | 0.1034        | -               |
| 0.0618 | 12000  | 0.0758        | -               |
| 0.0670 | 13000  | 0.1056        | -               |
| 0.0721 | 14000  | 0.1123        | -               |
| 0.0773 | 15000  | 0.0702        | -               |
| 0.0824 | 16000  | 0.1633        | -               |
| 0.0876 | 17000  | 0.0736        | -               |
| 0.0928 | 18000  | 0.1132        | -               |
| 0.0979 | 19000  | 0.0695        | -               |
| 0.1031 | 20000  | 0.1339        | -               |
| 0.1082 | 21000  | 0.0761        | -               |
| 0.1134 | 22000  | 0.1311        | -               |
| 0.1185 | 23000  | 0.0664        | -               |
| 0.1237 | 24000  | 0.0807        | -               |
| 0.1288 | 25000  | 0.0641        | -               |
| 0.1340 | 26000  | 0.1327        | -               |
| 0.1391 | 27000  | 0.0721        | -               |
| 0.1443 | 28000  | 0.139         | -               |
| 0.1494 | 29000  | 0.0694        | -               |
| 0.1546 | 30000  | 0.1446        | -               |
| 0.1597 | 31000  | 0.0651        | -               |
| 0.1649 | 32000  | 0.1079        | -               |
| 0.1700 | 33000  | 0.109         | -               |
| 0.1752 | 34000  | 0.0741        | -               |
| 0.1804 | 35000  | 0.144         | -               |
| 0.1855 | 36000  | 0.0693        | -               |
| 0.1907 | 37000  | 0.0762        | -               |
| 0.1958 | 38000  | 0.1255        | -               |
| 0.2010 | 39000  | 0.0764        | -               |
| 0.2061 | 40000  | 0.1253        | -               |
| 0.2113 | 41000  | 0.0861        | -               |
| 0.2164 | 42000  | 0.0722        | -               |
| 0.2216 | 43000  | 0.1178        | -               |
| 0.2267 | 44000  | 0.0727        | -               |
| 0.2319 | 45000  | 0.0827        | -               |
| 0.2370 | 46000  | 0.0996        | -               |
| 0.2422 | 47000  | 0.0657        | -               |
| 0.2473 | 48000  | 0.0836        | -               |
| 0.2525 | 49000  | 0.0913        | -               |
| 0.2576 | 50000  | 0.0747        | -               |
| 0.2628 | 51000  | 0.0649        | -               |
| 0.2679 | 52000  | 0.0671        | -               |
| 0.2731 | 53000  | 0.0905        | -               |
| 0.2783 | 54000  | 0.0806        | -               |
| 0.2834 | 55000  | 0.0574        | -               |
| 0.2886 | 56000  | 0.0667        | -               |
| 0.2937 | 57000  | 0.0634        | -               |
| 0.2989 | 58000  | 0.0662        | -               |
| 0.3040 | 59000  | 0.0607        | -               |
| 0.3092 | 60000  | 0.0762        | -               |
| 0.3143 | 61000  | 0.0474        | -               |
| 0.3195 | 62000  | 0.0531        | -               |
| 0.3246 | 63000  | 0.0579        | -               |
| 0.3298 | 64000  | 0.0704        | -               |
| 0.3349 | 65000  | 0.0688        | -               |
| 0.3401 | 66000  | 0.0544        | -               |
| 0.3452 | 67000  | 0.0424        | -               |
| 0.3504 | 68000  | 0.0551        | -               |
| 0.3555 | 69000  | 0.0717        | -               |
| 0.3607 | 70000  | 0.0812        | -               |
| 0.3659 | 71000  | 0.0882        | -               |
| 0.3710 | 72000  | 0.0357        | -               |
| 0.3762 | 73000  | 0.0448        | -               |
| 0.3813 | 74000  | 0.0542        | -               |
| 0.3865 | 75000  | 0.0456        | -               |
| 0.3916 | 76000  | 0.1029        | -               |
| 0.3968 | 77000  | 0.054         | -               |
| 0.4019 | 78000  | 0.0673        | -               |
| 0.4071 | 79000  | 0.0357        | -               |
| 0.4122 | 80000  | 0.0601        | -               |
| 0.4174 | 81000  | 0.0751        | -               |
| 0.4225 | 82000  | 0.044         | -               |
| 0.4277 | 83000  | 0.0489        | -               |
| 0.4328 | 84000  | 0.0648        | -               |
| 0.4380 | 85000  | 0.0308        | -               |
| 0.4431 | 86000  | 0.0415        | -               |
| 0.4483 | 87000  | 0.0468        | -               |
| 0.4535 | 88000  | 0.0719        | -               |
| 0.4586 | 89000  | 0.0577        | -               |
| 0.4638 | 90000  | 0.0465        | -               |
| 0.4689 | 91000  | 0.0357        | -               |
| 0.4741 | 92000  | 0.0413        | -               |
| 0.4792 | 93000  | 0.0482        | -               |
| 0.4844 | 94000  | 0.0471        | -               |
| 0.4895 | 95000  | 0.083         | -               |
| 0.4947 | 96000  | 0.0313        | -               |
| 0.4998 | 97000  | 0.0366        | -               |
| 0.5050 | 98000  | 0.034         | -               |
| 0.5101 | 99000  | 0.0366        | -               |
| 0.5153 | 100000 | 0.0292        | -               |
| 0.5204 | 101000 | 0.0423        | -               |
| 0.5256 | 102000 | 0.0451        | -               |
| 0.5307 | 103000 | 0.0243        | -               |
| 0.5359 | 104000 | 0.0315        | -               |
| 0.5411 | 105000 | 0.0288        | -               |
| 0.5462 | 106000 | 0.0232        | -               |
| 0.5514 | 107000 | 0.0533        | -               |
| 0.5565 | 108000 | 0.0474        | -               |
| 0.5617 | 109000 | 0.0312        | -               |
| 0.5668 | 110000 | 0.0381        | -               |
| 0.5720 | 111000 | 0.0407        | -               |
| 0.5771 | 112000 | 0.0411        | -               |
| 0.5823 | 113000 | 0.0285        | -               |
| 0.5874 | 114000 | 0.0344        | -               |
| 0.5926 | 115000 | 0.0471        | -               |
| 0.5977 | 116000 | 0.0311        | -               |
| 0.6029 | 117000 | 0.0671        | -               |
| 0.6080 | 118000 | 0.0406        | -               |
| 0.6132 | 119000 | 0.0342        | -               |
| 0.6183 | 120000 | 0.0393        | -               |
| 0.6235 | 121000 | 0.0288        | -               |
| 0.6286 | 122000 | 0.0407        | -               |
| 0.6338 | 123000 | 0.0385        | -               |
| 0.6390 | 124000 | 0.0463        | -               |
| 0.6441 | 125000 | 0.0419        | -               |
| 0.6493 | 126000 | 0.0505        | -               |
| 0.6544 | 127000 | 0.0426        | -               |
| 0.6596 | 128000 | 0.0422        | -               |
| 0.6647 | 129000 | 0.034         | -               |
| 0.6699 | 130000 | 0.0266        | -               |
| 0.6750 | 131000 | 0.0205        | -               |
| 0.6802 | 132000 | 0.0412        | -               |
| 0.6853 | 133000 | 0.0374        | -               |
| 0.6905 | 134000 | 0.0338        | -               |
| 0.6956 | 135000 | 0.0287        | -               |
| 0.7008 | 136000 | 0.0364        | -               |
| 0.7059 | 137000 | 0.0342        | -               |
| 0.7111 | 138000 | 0.0406        | -               |
| 0.7162 | 139000 | 0.0333        | -               |
| 0.7214 | 140000 | 0.0408        | -               |
| 0.7266 | 141000 | 0.0439        | -               |
| 0.7317 | 142000 | 0.0327        | -               |
| 0.7369 | 143000 | 0.028         | -               |
| 0.7420 | 144000 | 0.0267        | -               |
| 0.7472 | 145000 | 0.0286        | -               |
| 0.7523 | 146000 | 0.0231        | -               |
| 0.7575 | 147000 | 0.0291        | -               |
| 0.7626 | 148000 | 0.0365        | -               |
| 0.7678 | 149000 | 0.0345        | -               |
| 0.7729 | 150000 | 0.0291        | -               |
| 0.7781 | 151000 | 0.0364        | -               |
| 0.7832 | 152000 | 0.0364        | -               |
| 0.7884 | 153000 | 0.0291        | -               |
| 0.7935 | 154000 | 0.0379        | -               |
| 0.7987 | 155000 | 0.0343        | -               |
| 0.8038 | 156000 | 0.0355        | -               |
| 0.8090 | 157000 | 0.0334        | -               |
| 0.8142 | 158000 | 0.0289        | -               |
| 0.8193 | 159000 | 0.0366        | -               |
| 0.8245 | 160000 | 0.0357        | -               |
| 0.8296 | 161000 | 0.0265        | -               |
| 0.8348 | 162000 | 0.0231        | -               |
| 0.8399 | 163000 | 0.0177        | -               |
| 0.8451 | 164000 | 0.022         | -               |
| 0.8502 | 165000 | 0.0227        | -               |
| 0.8554 | 166000 | 0.0179        | -               |
| 0.8605 | 167000 | 0.0238        | -               |
| 0.8657 | 168000 | 0.0225        | -               |
| 0.8708 | 169000 | 0.0219        | -               |
| 0.8760 | 170000 | 0.0254        | -               |
| 0.8811 | 171000 | 0.0239        | -               |
| 0.8863 | 172000 | 0.0267        | -               |
| 0.8914 | 173000 | 0.0255        | -               |
| 0.8966 | 174000 | 0.0234        | -               |
| 0.9018 | 175000 | 0.0261        | -               |
| 0.9069 | 176000 | 0.0235        | -               |
| 0.9121 | 177000 | 0.0267        | -               |
| 0.9172 | 178000 | 0.0232        | -               |
| 0.9224 | 179000 | 0.0197        | -               |
| 0.9275 | 180000 | 0.0189        | -               |
| 0.9327 | 181000 | 0.0219        | -               |
| 0.9378 | 182000 | 0.0226        | -               |
| 0.9430 | 183000 | 0.021         | -               |
| 0.9481 | 184000 | 0.0214        | -               |
| 0.9533 | 185000 | 0.0219        | -               |
| 0.9584 | 186000 | 0.021         | -               |
| 0.9636 | 187000 | 0.0195        | -               |
| 0.9687 | 188000 | 0.0188        | -               |
| 0.9739 | 189000 | 0.0205        | -               |
| 0.9790 | 190000 | 0.0199        | -               |
| 0.9842 | 191000 | 0.0315        | -               |
| 0.9893 | 192000 | 0.0214        | -               |
| 0.9945 | 193000 | 0.0169        | -               |
| 0.9997 | 194000 | 0.0182        | -               |
| 1.0000 | 194066 | -             | 0.0006          |
| 1.0048 | 195000 | 0.2355        | -               |
| 1.0100 | 196000 | 0.0796        | -               |
| 1.0151 | 197000 | 0.0853        | -               |
| 1.0203 | 198000 | 0.0829        | -               |
| 1.0254 | 199000 | 0.0628        | -               |
| 1.0306 | 200000 | 0.0698        | -               |
| 1.0357 | 201000 | 0.0601        | -               |
| 1.0409 | 202000 | 0.0581        | -               |
| 1.0460 | 203000 | 0.0577        | -               |
| 1.0512 | 204000 | 0.0697        | -               |
| 1.0563 | 205000 | 0.0515        | -               |
| 1.0615 | 206000 | 0.0553        | -               |
| 1.0666 | 207000 | 0.0613        | -               |
| 1.0718 | 208000 | 0.0712        | -               |
| 1.0769 | 209000 | 0.043         | -               |
| 1.0821 | 210000 | 0.1127        | -               |
| 1.0873 | 211000 | 0.0437        | -               |
| 1.0924 | 212000 | 0.0737        | -               |
| 1.0976 | 213000 | 0.0437        | -               |
| 1.1027 | 214000 | 0.0916        | -               |
| 1.1079 | 215000 | 0.0454        | -               |
| 1.1130 | 216000 | 0.088         | -               |
| 1.1182 | 217000 | 0.0442        | -               |
| 1.1233 | 218000 | 0.0505        | -               |
| 1.1285 | 219000 | 0.0414        | -               |
| 1.1336 | 220000 | 0.0904        | -               |
| 1.1388 | 221000 | 0.0466        | -               |
| 1.1439 | 222000 | 0.0965        | -               |
| 1.1491 | 223000 | 0.0459        | -               |
| 1.1542 | 224000 | 0.0992        | -               |
| 1.1594 | 225000 | 0.0435        | -               |
| 1.1645 | 226000 | 0.0594        | -               |
| 1.1697 | 227000 | 0.0857        | -               |
| 1.1749 | 228000 | 0.049         | -               |
| 1.1800 | 229000 | 0.0995        | -               |
| 1.1852 | 230000 | 0.0471        | -               |
| 1.1903 | 231000 | 0.0499        | -               |
| 1.1955 | 232000 | 0.0866        | -               |
| 1.2006 | 233000 | 0.0496        | -               |
| 1.2058 | 234000 | 0.0854        | -               |
| 1.2109 | 235000 | 0.0589        | -               |
| 1.2161 | 236000 | 0.0461        | -               |
| 1.2212 | 237000 | 0.0814        | -               |
| 1.2264 | 238000 | 0.0489        | -               |
| 1.2315 | 239000 | 0.0551        | -               |
| 1.2367 | 240000 | 0.0695        | -               |
| 1.2418 | 241000 | 0.043         | -               |
| 1.2470 | 242000 | 0.0533        | -               |
| 1.2521 | 243000 | 0.0556        | -               |
| 1.2573 | 244000 | 0.0608        | -               |
| 1.2625 | 245000 | 0.0426        | -               |
| 1.2676 | 246000 | 0.0439        | -               |
| 1.2728 | 247000 | 0.0638        | -               |
| 1.2779 | 248000 | 0.0549        | -               |
| 1.2831 | 249000 | 0.0377        | -               |
| 1.2882 | 250000 | 0.0383        | -               |
| 1.2934 | 251000 | 0.0472        | -               |
| 1.2985 | 252000 | 0.0448        | -               |
| 1.3037 | 253000 | 0.0387        | -               |
| 1.3088 | 254000 | 0.0528        | -               |
| 1.3140 | 255000 | 0.0331        | -               |
| 1.3191 | 256000 | 0.0342        | -               |
| 1.3243 | 257000 | 0.0362        | -               |
| 1.3294 | 258000 | 0.0436        | -               |
| 1.3346 | 259000 | 0.0524        | -               |
| 1.3397 | 260000 | 0.0353        | -               |
| 1.3449 | 261000 | 0.0274        | -               |
| 1.3500 | 262000 | 0.0368        | -               |
| 1.3552 | 263000 | 0.0486        | -               |
| 1.3604 | 264000 | 0.0536        | -               |
| 1.3655 | 265000 | 0.0595        | -               |
| 1.3707 | 266000 | 0.024         | -               |
| 1.3758 | 267000 | 0.0243        | -               |
| 1.3810 | 268000 | 0.0393        | -               |
| 1.3861 | 269000 | 0.029         | -               |
| 1.3913 | 270000 | 0.0722        | -               |
| 1.3964 | 271000 | 0.0366        | -               |
| 1.4016 | 272000 | 0.0375        | -               |
| 1.4067 | 273000 | 0.0289        | -               |
| 1.4119 | 274000 | 0.0247        | -               |
| 1.4170 | 275000 | 0.0695        | -               |
| 1.4222 | 276000 | 0.0283        | -               |
| 1.4273 | 277000 | 0.0328        | -               |
| 1.4325 | 278000 | 0.0457        | -               |
| 1.4376 | 279000 | 0.0204        | -               |
| 1.4428 | 280000 | 0.0277        | -               |
| 1.4480 | 281000 | 0.0255        | -               |
| 1.4531 | 282000 | 0.0536        | -               |
| 1.4583 | 283000 | 0.0411        | -               |
| 1.4634 | 284000 | 0.0289        | -               |
| 1.4686 | 285000 | 0.0244        | -               |
| 1.4737 | 286000 | 0.0292        | -               |
| 1.4789 | 287000 | 0.0334        | -               |
| 1.4840 | 288000 | 0.0315        | -               |
| 1.4892 | 289000 | 0.0408        | -               |
| 1.4943 | 290000 | 0.0379        | -               |
| 1.4995 | 291000 | 0.0243        | -               |
| 1.5046 | 292000 | 0.0228        | -               |
| 1.5098 | 293000 | 0.0235        | -               |
| 1.5149 | 294000 | 0.0187        | -               |
| 1.5201 | 295000 | 0.0256        | -               |
| 1.5252 | 296000 | 0.031         | -               |
| 1.5304 | 297000 | 0.0156        | -               |
| 1.5356 | 298000 | 0.0216        | -               |
| 1.5407 | 299000 | 0.0185        | -               |
| 1.5459 | 300000 | 0.0146        | -               |
| 1.5510 | 301000 | 0.0302        | -               |
| 1.5562 | 302000 | 0.0346        | -               |
| 1.5613 | 303000 | 0.0211        | -               |
| 1.5665 | 304000 | 0.0211        | -               |
| 1.5716 | 305000 | 0.0239        | -               |
| 1.5768 | 306000 | 0.0265        | -               |
| 1.5819 | 307000 | 0.018         | -               |
| 1.5871 | 308000 | 0.0204        | -               |
| 1.5922 | 309000 | 0.0288        | -               |
| 1.5974 | 310000 | 0.0193        | -               |
| 1.6025 | 311000 | 0.0443        | -               |
| 1.6077 | 312000 | 0.0251        | -               |
| 1.6128 | 313000 | 0.0209        | -               |
| 1.6180 | 314000 | 0.0245        | -               |
| 1.6232 | 315000 | 0.0179        | -               |
| 1.6283 | 316000 | 0.026         | -               |
| 1.6335 | 317000 | 0.025         | -               |
| 1.6386 | 318000 | 0.0291        | -               |
| 1.6438 | 319000 | 0.028         | -               |
| 1.6489 | 320000 | 0.0351        | -               |
| 1.6541 | 321000 | 0.0279        | -               |
| 1.6592 | 322000 | 0.0285        | -               |
| 1.6644 | 323000 | 0.0239        | -               |
| 1.6695 | 324000 | 0.0171        | -               |
| 1.6747 | 325000 | 0.0131        | -               |
| 1.6798 | 326000 | 0.0252        | -               |
| 1.6850 | 327000 | 0.0244        | -               |
| 1.6901 | 328000 | 0.0234        | -               |
| 1.6953 | 329000 | 0.0185        | -               |
| 1.7004 | 330000 | 0.0248        | -               |
| 1.7056 | 331000 | 0.0243        | -               |
| 1.7107 | 332000 | 0.0282        | -               |
| 1.7159 | 333000 | 0.0225        | -               |
| 1.7211 | 334000 | 0.0256        | -               |
| 1.7262 | 335000 | 0.03          | -               |
| 1.7314 | 336000 | 0.0227        | -               |
| 1.7365 | 337000 | 0.0192        | -               |
| 1.7417 | 338000 | 0.0178        | -               |
| 1.7468 | 339000 | 0.0187        | -               |
| 1.7520 | 340000 | 0.0156        | -               |
| 1.7571 | 341000 | 0.0186        | -               |
| 1.7623 | 342000 | 0.0241        | -               |
| 1.7674 | 343000 | 0.0252        | -               |
| 1.7726 | 344000 | 0.0201        | -               |
| 1.7777 | 345000 | 0.0251        | -               |
| 1.7829 | 346000 | 0.0258        | -               |
| 1.7880 | 347000 | 0.0216        | -               |
| 1.7932 | 348000 | 0.0274        | -               |
| 1.7983 | 349000 | 0.0244        | -               |
| 1.8035 | 350000 | 0.0243        | -               |
| 1.8087 | 351000 | 0.024         | -               |
| 1.8138 | 352000 | 0.0182        | -               |
| 1.8190 | 353000 | 0.0233        | -               |
| 1.8241 | 354000 | 0.024         | -               |
| 1.8293 | 355000 | 0.0177        | -               |
| 1.8344 | 356000 | 0.0149        | -               |
| 1.8396 | 357000 | 0.0113        | -               |
| 1.8447 | 358000 | 0.0142        | -               |
| 1.8499 | 359000 | 0.0147        | -               |
| 1.8550 | 360000 | 0.0109        | -               |
| 1.8602 | 361000 | 0.0155        | -               |
| 1.8653 | 362000 | 0.0144        | -               |
| 1.8705 | 363000 | 0.0131        | -               |
| 1.8756 | 364000 | 0.0171        | -               |
| 1.8808 | 365000 | 0.0156        | -               |
| 1.8859 | 366000 | 0.0168        | -               |
| 1.8911 | 367000 | 0.0167        | -               |
| 1.8963 | 368000 | 0.0161        | -               |
| 1.9014 | 369000 | 0.0168        | -               |
| 1.9066 | 370000 | 0.0151        | -               |
| 1.9117 | 371000 | 0.0178        | -               |
| 1.9169 | 372000 | 0.0153        | -               |
| 1.9220 | 373000 | 0.0133        | -               |
| 1.9272 | 374000 | 0.0121        | -               |
| 1.9323 | 375000 | 0.0141        | -               |
| 1.9375 | 376000 | 0.0151        | -               |
| 1.9426 | 377000 | 0.0142        | -               |
| 1.9478 | 378000 | 0.0141        | -               |
| 1.9529 | 379000 | 0.014         | -               |
| 1.9581 | 380000 | 0.0144        | -               |
| 1.9632 | 381000 | 0.0123        | -               |
| 1.9684 | 382000 | 0.0128        | -               |
| 1.9735 | 383000 | 0.0132        | -               |
| 1.9787 | 384000 | 0.0135        | -               |
| 1.9839 | 385000 | 0.0155        | -               |
| 1.9890 | 386000 | 0.0214        | -               |
| 1.9942 | 387000 | 0.0111        | -               |
| 1.9993 | 388000 | 0.0121        | -               |
| 2.0000 | 388132 | -             | 0.0005          |
| 2.0045 | 389000 | 0.1779        | -               |
| 2.0096 | 390000 | 0.0634        | -               |
| 2.0148 | 391000 | 0.0613        | -               |
| 2.0199 | 392000 | 0.0741        | -               |
| 2.0251 | 393000 | 0.0496        | -               |
| 2.0302 | 394000 | 0.056         | -               |
| 2.0354 | 395000 | 0.048         | -               |
| 2.0405 | 396000 | 0.0458        | -               |
| 2.0457 | 397000 | 0.0457        | -               |
| 2.0508 | 398000 | 0.057         | -               |
| 2.0560 | 399000 | 0.04          | -               |
| 2.0611 | 400000 | 0.0435        | -               |
| 2.0663 | 401000 | 0.0484        | -               |
| 2.0714 | 402000 | 0.0519        | -               |
| 2.0766 | 403000 | 0.0405        | -               |
| 2.0818 | 404000 | 0.0955        | -               |
| 2.0869 | 405000 | 0.0331        | -               |
| 2.0921 | 406000 | 0.0607        | -               |
| 2.0972 | 407000 | 0.0335        | -               |
| 2.1024 | 408000 | 0.0771        | -               |
| 2.1075 | 409000 | 0.0346        | -               |
| 2.1127 | 410000 | 0.073         | -               |
| 2.1178 | 411000 | 0.0348        | -               |
| 2.1230 | 412000 | 0.0396        | -               |
| 2.1281 | 413000 | 0.0317        | -               |
| 2.1333 | 414000 | 0.0766        | -               |
| 2.1384 | 415000 | 0.0366        | -               |
| 2.1436 | 416000 | 0.0796        | -               |
| 2.1487 | 417000 | 0.0367        | -               |
| 2.1539 | 418000 | 0.0819        | -               |
| 2.1590 | 419000 | 0.0344        | -               |
| 2.1642 | 420000 | 0.0435        | -               |
| 2.1694 | 421000 | 0.0764        | -               |
| 2.1745 | 422000 | 0.0389        | -               |
| 2.1797 | 423000 | 0.0675        | -               |
| 2.1848 | 424000 | 0.0521        | -               |
| 2.1900 | 425000 | 0.0405        | -               |
| 2.1951 | 426000 | 0.0704        | -               |
| 2.2003 | 427000 | 0.0404        | -               |
| 2.2054 | 428000 | 0.0703        | -               |
| 2.2106 | 429000 | 0.0461        | -               |
| 2.2157 | 430000 | 0.0378        | -               |
| 2.2209 | 431000 | 0.0655        | -               |
| 2.2260 | 432000 | 0.0391        | -               |
| 2.2312 | 433000 | 0.044         | -               |
| 2.2363 | 434000 | 0.0576        | -               |
| 2.2415 | 435000 | 0.0337        | -               |
| 2.2466 | 436000 | 0.0409        | -               |
| 2.2518 | 437000 | 0.0453        | -               |
| 2.2570 | 438000 | 0.0498        | -               |
| 2.2621 | 439000 | 0.0327        | -               |
| 2.2673 | 440000 | 0.0347        | -               |
| 2.2724 | 441000 | 0.0496        | -               |
| 2.2776 | 442000 | 0.0442        | -               |
| 2.2827 | 443000 | 0.0299        | -               |
| 2.2879 | 444000 | 0.031         | -               |
| 2.2930 | 445000 | 0.0378        | -               |
| 2.2982 | 446000 | 0.0339        | -               |
| 2.3033 | 447000 | 0.0297        | -               |
| 2.3085 | 448000 | 0.0406        | -               |
| 2.3136 | 449000 | 0.0277        | -               |
| 2.3188 | 450000 | 0.0271        | -               |
| 2.3239 | 451000 | 0.0275        | -               |
| 2.3291 | 452000 | 0.033         | -               |
| 2.3342 | 453000 | 0.0447        | -               |
| 2.3394 | 454000 | 0.0268        | -               |
| 2.3446 | 455000 | 0.0205        | -               |
| 2.3497 | 456000 | 0.029         | -               |
| 2.3549 | 457000 | 0.038         | -               |
| 2.3600 | 458000 | 0.0419        | -               |
| 2.3652 | 459000 | 0.0475        | -               |
| 2.3703 | 460000 | 0.0179        | -               |
| 2.3755 | 461000 | 0.0178        | -               |
| 2.3806 | 462000 | 0.0302        | -               |
| 2.3858 | 463000 | 0.0233        | -               |
| 2.3909 | 464000 | 0.0599        | -               |
| 2.3961 | 465000 | 0.0277        | -               |
| 2.4012 | 466000 | 0.0229        | -               |
| 2.4064 | 467000 | 0.0295        | -               |
| 2.4115 | 468000 | 0.0181        | -               |
| 2.4167 | 469000 | 0.057         | -               |
| 2.4218 | 470000 | 0.0203        | -               |
| 2.4270 | 471000 | 0.0248        | -               |
| 2.4321 | 472000 | 0.0382        | -               |
| 2.4373 | 473000 | 0.0151        | -               |
| 2.4425 | 474000 | 0.0212        | -               |
| 2.4476 | 475000 | 0.0131        | -               |
| 2.4528 | 476000 | 0.0473        | -               |
| 2.4579 | 477000 | 0.034         | -               |
| 2.4631 | 478000 | 0.0222        | -               |
| 2.4682 | 479000 | 0.0189        | -               |
| 2.4734 | 480000 | 0.0223        | -               |
| 2.4785 | 481000 | 0.0242        | -               |
| 2.4837 | 482000 | 0.0247        | -               |
| 2.4888 | 483000 | 0.0293        | -               |
| 2.4940 | 484000 | 0.0372        | -               |
| 2.4991 | 485000 | 0.0178        | -               |
| 2.5043 | 486000 | 0.0152        | -               |
| 2.5094 | 487000 | 0.0201        | -               |
| 2.5146 | 488000 | 0.0135        | -               |
| 2.5197 | 489000 | 0.0194        | -               |
| 2.5249 | 490000 | 0.0239        | -               |
| 2.5301 | 491000 | 0.0116        | -               |
| 2.5352 | 492000 | 0.0163        | -               |
| 2.5404 | 493000 | 0.0142        | -               |
| 2.5455 | 494000 | 0.0101        | -               |
| 2.5507 | 495000 | 0.0218        | -               |
| 2.5558 | 496000 | 0.0255        | -               |
| 2.5610 | 497000 | 0.0178        | -               |
| 2.5661 | 498000 | 0.0145        | -               |
| 2.5713 | 499000 | 0.0178        | -               |
| 2.5764 | 500000 | 0.0195        | -               |
| 2.5816 | 501000 | 0.0131        | -               |
| 2.5867 | 502000 | 0.0149        | -               |
| 2.5919 | 503000 | 0.0213        | -               |
| 2.5970 | 504000 | 0.013         | -               |
| 2.6022 | 505000 | 0.0351        | -               |
| 2.6073 | 506000 | 0.0197        | -               |
| 2.6125 | 507000 | 0.0133        | -               |
| 2.6177 | 508000 | 0.0201        | -               |
| 2.6228 | 509000 | 0.0133        | -               |
| 2.6280 | 510000 | 0.0189        | -               |
| 2.6331 | 511000 | 0.0191        | -               |
| 2.6383 | 512000 | 0.0227        | -               |
| 2.6434 | 513000 | 0.0199        | -               |
| 2.6486 | 514000 | 0.0281        | -               |
| 2.6537 | 515000 | 0.0216        | -               |
| 2.6589 | 516000 | 0.0219        | -               |
| 2.6640 | 517000 | 0.0185        | -               |
| 2.6692 | 518000 | 0.0131        | -               |
| 2.6743 | 519000 | 0.0104        | -               |
| 2.6795 | 520000 | 0.019         | -               |
| 2.6846 | 521000 | 0.0179        | -               |
| 2.6898 | 522000 | 0.0187        | -               |
| 2.6949 | 523000 | 0.0138        | -               |
| 2.7001 | 524000 | 0.0194        | -               |
| 2.7053 | 525000 | 0.018         | -               |
| 2.7104 | 526000 | 0.0222        | -               |
| 2.7156 | 527000 | 0.018         | -               |
| 2.7207 | 528000 | 0.0174        | -               |
| 2.7259 | 529000 | 0.0254        | -               |
| 2.7310 | 530000 | 0.0178        | -               |
| 2.7362 | 531000 | 0.0147        | -               |
| 2.7413 | 532000 | 0.0128        | -               |
| 2.7465 | 533000 | 0.0145        | -               |
| 2.7516 | 534000 | 0.0123        | -               |
| 2.7568 | 535000 | 0.0134        | -               |
| 2.7619 | 536000 | 0.0181        | -               |
| 2.7671 | 537000 | 0.0207        | -               |
| 2.7722 | 538000 | 0.0163        | -               |
| 2.7774 | 539000 | 0.0201        | -               |
| 2.7825 | 540000 | 0.0214        | -               |
| 2.7877 | 541000 | 0.0169        | -               |
| 2.7928 | 542000 | 0.0224        | -               |
| 2.7980 | 543000 | 0.0194        | -               |
| 2.8032 | 544000 | 0.0197        | -               |
| 2.8083 | 545000 | 0.0195        | -               |
| 2.8135 | 546000 | 0.0127        | -               |
| 2.8186 | 547000 | 0.018         | -               |
| 2.8238 | 548000 | 0.0182        | -               |
| 2.8289 | 549000 | 0.0138        | -               |
| 2.8341 | 550000 | 0.0109        | -               |
| 2.8392 | 551000 | 0.0082        | -               |
| 2.8444 | 552000 | 0.0105        | -               |
| 2.8495 | 553000 | 0.0104        | -               |
| 2.8547 | 554000 | 0.0081        | -               |
| 2.8598 | 555000 | 0.0111        | -               |
| 2.8650 | 556000 | 0.0104        | -               |
| 2.8701 | 557000 | 0.0098        | -               |
| 2.8753 | 558000 | 0.0123        | -               |
| 2.8804 | 559000 | 0.0119        | -               |
| 2.8856 | 560000 | 0.0119        | -               |
| 2.8908 | 561000 | 0.0122        | -               |
| 2.8959 | 562000 | 0.012         | -               |
| 2.9011 | 563000 | 0.0123        | -               |
| 2.9062 | 564000 | 0.0117        | -               |
| 2.9114 | 565000 | 0.013         | -               |
| 2.9165 | 566000 | 0.0118        | -               |
| 2.9217 | 567000 | 0.0097        | -               |
| 2.9268 | 568000 | 0.0085        | -               |
| 2.9320 | 569000 | 0.0099        | -               |
| 2.9371 | 570000 | 0.0111        | -               |
| 2.9423 | 571000 | 0.011         | -               |
| 2.9474 | 572000 | 0.0103        | -               |
| 2.9526 | 573000 | 0.0099        | -               |
| 2.9577 | 574000 | 0.0106        | -               |
| 2.9629 | 575000 | 0.0088        | -               |
| 2.9680 | 576000 | 0.0096        | -               |
| 2.9732 | 577000 | 0.0092        | -               |
| 2.9784 | 578000 | 0.0102        | -               |
| 2.9835 | 579000 | 0.0111        | -               |
| 2.9887 | 580000 | 0.018         | -               |
| 2.9938 | 581000 | 0.0082        | -               |
| 2.9990 | 582000 | 0.009         | -               |
| 3.0000 | 582198 | -             | 0.0005          |
| 3.0041 | 583000 | 0.1405        | -               |
| 3.0093 | 584000 | 0.0599        | -               |
| 3.0144 | 585000 | 0.0529        | -               |
| 3.0196 | 586000 | 0.0627        | -               |
| 3.0247 | 587000 | 0.0428        | -               |
| 3.0299 | 588000 | 0.0477        | -               |
| 3.0350 | 589000 | 0.0396        | -               |
| 3.0402 | 590000 | 0.0384        | -               |
| 3.0453 | 591000 | 0.0386        | -               |
| 3.0505 | 592000 | 0.0481        | -               |
| 3.0556 | 593000 | 0.0331        | -               |
| 3.0608 | 594000 | 0.0366        | -               |
| 3.0660 | 595000 | 0.0399        | -               |
| 3.0711 | 596000 | 0.042         | -               |
| 3.0763 | 597000 | 0.0368        | -               |
| 3.0814 | 598000 | 0.0837        | -               |
| 3.0866 | 599000 | 0.0272        | -               |
| 3.0917 | 600000 | 0.0532        | -               |
| 3.0969 | 601000 | 0.0266        | -               |
| 3.1020 | 602000 | 0.0691        | -               |
| 3.1072 | 603000 | 0.0276        | -               |
| 3.1123 | 604000 | 0.0629        | -               |
| 3.1175 | 605000 | 0.0294        | -               |
| 3.1226 | 606000 | 0.0324        | -               |
| 3.1278 | 607000 | 0.0259        | -               |
| 3.1329 | 608000 | 0.066         | -               |
| 3.1381 | 609000 | 0.0307        | -               |
| 3.1432 | 610000 | 0.0696        | -               |
| 3.1484 | 611000 | 0.0302        | -               |
| 3.1536 | 612000 | 0.0716        | -               |
| 3.1587 | 613000 | 0.0274        | -               |
| 3.1639 | 614000 | 0.0278        | -               |
| 3.1690 | 615000 | 0.0766        | -               |
| 3.1742 | 616000 | 0.0324        | -               |
| 3.1793 | 617000 | 0.0582        | -               |
| 3.1845 | 618000 | 0.0441        | -               |
| 3.1896 | 619000 | 0.0331        | -               |
| 3.1948 | 620000 | 0.0624        | -               |
| 3.1999 | 621000 | 0.0339        | -               |
| 3.2051 | 622000 | 0.059         | -               |
| 3.2102 | 623000 | 0.0379        | -               |
| 3.2154 | 624000 | 0.0339        | -               |
| 3.2205 | 625000 | 0.0556        | -               |
| 3.2257 | 626000 | 0.0319        | -               |
| 3.2308 | 627000 | 0.0373        | -               |
| 3.2360 | 628000 | 0.0475        | -               |
| 3.2411 | 629000 | 0.0297        | -               |
| 3.2463 | 630000 | 0.0321        | -               |
| 3.2515 | 631000 | 0.0381        | -               |
| 3.2566 | 632000 | 0.0439        | -               |
| 3.2618 | 633000 | 0.0261        | -               |
| 3.2669 | 634000 | 0.0292        | -               |
| 3.2721 | 635000 | 0.0404        | -               |
| 3.2772 | 636000 | 0.0385        | -               |
| 3.2824 | 637000 | 0.0252        | -               |
| 3.2875 | 638000 | 0.0255        | -               |
| 3.2927 | 639000 | 0.0305        | -               |
| 3.2978 | 640000 | 0.0283        | -               |
| 3.3030 | 641000 | 0.0245        | -               |
| 3.3081 | 642000 | 0.0271        | -               |
| 3.3133 | 643000 | 0.0297        | -               |
| 3.3184 | 644000 | 0.022         | -               |
| 3.3236 | 645000 | 0.0218        | -               |
| 3.3287 | 646000 | 0.0269        | -               |
| 3.3339 | 647000 | 0.0386        | -               |
| 3.3391 | 648000 | 0.021         | -               |
| 3.3442 | 649000 | 0.0161        | -               |
| 3.3494 | 650000 | 0.0231        | -               |
| 3.3545 | 651000 | 0.032         | -               |
| 3.3597 | 652000 | 0.0339        | -               |
| 3.3648 | 653000 | 0.0407        | -               |
| 3.3700 | 654000 | 0.0146        | -               |
| 3.3751 | 655000 | 0.0151        | -               |
| 3.3803 | 656000 | 0.0236        | -               |
| 3.3854 | 657000 | 0.0184        | -               |
| 3.3906 | 658000 | 0.0518        | -               |
| 3.3957 | 659000 | 0.0213        | -               |
| 3.4009 | 660000 | 0.017         | -               |
| 3.4060 | 661000 | 0.027         | -               |
| 3.4112 | 662000 | 0.0142        | -               |
| 3.4163 | 663000 | 0.0492        | -               |
| 3.4215 | 664000 | 0.0158        | -               |
| 3.4267 | 665000 | 0.0192        | -               |
| 3.4318 | 666000 | 0.0341        | -               |
| 3.4370 | 667000 | 0.0114        | -               |
| 3.4421 | 668000 | 0.0171        | -               |
| 3.4473 | 669000 | 0.0107        | -               |
| 3.4524 | 670000 | 0.0368        | -               |
| 3.4576 | 671000 | 0.0306        | -               |
| 3.4627 | 672000 | 0.0192        | -               |
| 3.4679 | 673000 | 0.0151        | -               |
| 3.4730 | 674000 | 0.0181        | -               |
| 3.4782 | 675000 | 0.0197        | -               |
| 3.4833 | 676000 | 0.0204        | -               |
| 3.4885 | 677000 | 0.0245        | -               |
| 3.4936 | 678000 | 0.0316        | -               |
| 3.4988 | 679000 | 0.0142        | -               |
| 3.5039 | 680000 | 0.012         | -               |
| 3.5091 | 681000 | 0.0166        | -               |
| 3.5143 | 682000 | 0.0103        | -               |
| 3.5194 | 683000 | 0.0154        | -               |
| 3.5246 | 684000 | 0.0195        | -               |
| 3.5297 | 685000 | 0.0093        | -               |
| 3.5349 | 686000 | 0.0127        | -               |
| 3.5400 | 687000 | 0.0101        | -               |
| 3.5452 | 688000 | 0.0085        | -               |
| 3.5503 | 689000 | 0.0167        | -               |
| 3.5555 | 690000 | 0.0205        | -               |
| 3.5606 | 691000 | 0.0151        | -               |
| 3.5658 | 692000 | 0.0109        | -               |
| 3.5709 | 693000 | 0.014         | -               |
| 3.5761 | 694000 | 0.0149        | -               |
| 3.5812 | 695000 | 0.0107        | -               |
| 3.5864 | 696000 | 0.0112        | -               |
| 3.5915 | 697000 | 0.0168        | -               |
| 3.5967 | 698000 | 0.0101        | -               |
| 3.6018 | 699000 | 0.0283        | -               |
| 3.6070 | 700000 | 0.0156        | -               |
| 3.6122 | 701000 | 0.0105        | -               |
| 3.6173 | 702000 | 0.0167        | -               |
| 3.6225 | 703000 | 0.0106        | -               |
| 3.6276 | 704000 | 0.0144        | -               |
| 3.6328 | 705000 | 0.0162        | -               |
| 3.6379 | 706000 | 0.0179        | -               |
| 3.6431 | 707000 | 0.0161        | -               |
| 3.6482 | 708000 | 0.0232        | -               |
| 3.6534 | 709000 | 0.017         | -               |
| 3.6585 | 710000 | 0.018         | -               |
| 3.6637 | 711000 | 0.0157        | -               |
| 3.6688 | 712000 | 0.0101        | -               |
| 3.6740 | 713000 | 0.0085        | -               |
| 3.6791 | 714000 | 0.0143        | -               |
| 3.6843 | 715000 | 0.0152        | -               |
| 3.6894 | 716000 | 0.0153        | -               |
| 3.6946 | 717000 | 0.0117        | -               |
| 3.6998 | 718000 | 0.0147        | -               |
| 3.7049 | 719000 | 0.015         | -               |
| 3.7101 | 720000 | 0.0188        | -               |
| 3.7152 | 721000 | 0.0141        | -               |
| 3.7204 | 722000 | 0.0143        | -               |
| 3.7255 | 723000 | 0.0214        | -               |
| 3.7307 | 724000 | 0.0144        | -               |
| 3.7358 | 725000 | 0.0121        | -               |
| 3.7410 | 726000 | 0.0104        | -               |
| 3.7461 | 727000 | 0.0114        | -               |
| 3.7513 | 728000 | 0.0105        | -               |
| 3.7564 | 729000 | 0.0096        | -               |
| 3.7616 | 730000 | 0.0146        | -               |
| 3.7667 | 731000 | 0.018         | -               |
| 3.7719 | 732000 | 0.0141        | -               |
| 3.7770 | 733000 | 0.0166        | -               |
| 3.7822 | 734000 | 0.0182        | -               |
| 3.7874 | 735000 | 0.015         | -               |
| 3.7925 | 736000 | 0.0184        | -               |
| 3.7977 | 737000 | 0.0162        | -               |
| 3.8028 | 738000 | 0.0166        | -               |
| 3.8080 | 739000 | 0.017         | -               |
| 3.8131 | 740000 | 0.01          | -               |
| 3.8183 | 741000 | 0.0143        | -               |
| 3.8234 | 742000 | 0.0147        | -               |
| 3.8286 | 743000 | 0.0109        | -               |
| 3.8337 | 744000 | 0.0088        | -               |
| 3.8389 | 745000 | 0.0064        | -               |
| 3.8440 | 746000 | 0.0084        | -               |
| 3.8492 | 747000 | 0.0079        | -               |
| 3.8543 | 748000 | 0.0064        | -               |
| 3.8595 | 749000 | 0.0085        | -               |
| 3.8646 | 750000 | 0.0082        | -               |
| 3.8698 | 751000 | 0.0077        | -               |
| 3.8750 | 752000 | 0.0096        | -               |
| 3.8801 | 753000 | 0.0095        | -               |
| 3.8853 | 754000 | 0.0093        | -               |
| 3.8904 | 755000 | 0.0095        | -               |
| 3.8956 | 756000 | 0.0097        | -               |
| 3.9007 | 757000 | 0.01          | -               |
| 3.9059 | 758000 | 0.0091        | -               |
| 3.9110 | 759000 | 0.01          | -               |
| 3.9162 | 760000 | 0.0099        | -               |
| 3.9213 | 761000 | 0.0082        | -               |
| 3.9265 | 762000 | 0.0066        | -               |
| 3.9316 | 763000 | 0.0073        | -               |
| 3.9368 | 764000 | 0.0082        | -               |
| 3.9419 | 765000 | 0.0092        | -               |
| 3.9471 | 766000 | 0.0079        | -               |
| 3.9522 | 767000 | 0.008         | -               |
| 3.9574 | 768000 | 0.0081        | -               |
| 3.9625 | 769000 | 0.007         | -               |
| 3.9677 | 770000 | 0.0076        | -               |
| 3.9729 | 771000 | 0.0072        | -               |
| 3.9780 | 772000 | 0.008         | -               |
| 3.9832 | 773000 | 0.0082        | -               |
| 3.9883 | 774000 | 0.0163        | -               |
| 3.9935 | 775000 | 0.0066        | -               |
| 3.9986 | 776000 | 0.0068        | -               |
| 4.0000 | 776264 | -             | 0.0005          |

</details>

### Framework Versions
- Python: 3.12.2
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0
- Accelerate: 1.0.1
- Datasets: 3.0.2
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->