File size: 8,800 Bytes
a15e513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
{
  "results": {
    "leaderboard_ifeval": {
      "alias": "leaderboard_ifeval",
      "prompt_level_strict_acc,none": 0.32532347504621073,
      "prompt_level_strict_acc_stderr,none": 0.020160839912603118,
      "inst_level_strict_acc,none": 0.4580335731414868,
      "inst_level_strict_acc_stderr,none": "N/A",
      "prompt_level_loose_acc,none": 0.3807763401109057,
      "prompt_level_loose_acc_stderr,none": 0.020895937888190833,
      "inst_level_loose_acc,none": 0.5059952038369304,
      "inst_level_loose_acc_stderr,none": "N/A"
    }
  },
  "group_subtasks": {
    "leaderboard_ifeval": []
  },
  "configs": {
    "leaderboard_ifeval": {
      "task": "leaderboard_ifeval",
      "dataset_path": "wis-k/instruction-following-eval",
      "test_split": "train",
      "doc_to_text": "prompt",
      "doc_to_target": 0,
      "process_results": "def process_results(doc, results):\n    inp = InputExample(\n        key=doc[\"key\"],\n        instruction_id_list=doc[\"instruction_id_list\"],\n        prompt=doc[\"prompt\"],\n        kwargs=doc[\"kwargs\"],\n    )\n    response = results[0]\n\n    out_strict = test_instruction_following_strict(inp, response)\n    out_loose = test_instruction_following_loose(inp, response)\n\n    return {\n        \"prompt_level_strict_acc\": out_strict.follow_all_instructions,\n        \"inst_level_strict_acc\": out_strict.follow_instruction_list,\n        \"prompt_level_loose_acc\": out_loose.follow_all_instructions,\n        \"inst_level_loose_acc\": out_loose.follow_instruction_list,\n    }\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "prompt_level_strict_acc",
          "aggregation": "mean",
          "higher_is_better": true
        },
        {
          "metric": "inst_level_strict_acc",
          "aggregation": "def agg_inst_level_acc(items):\n    flat_items = [item for sublist in items for item in sublist]\n    inst_level_acc = sum(flat_items) / len(flat_items)\n    return inst_level_acc\n",
          "higher_is_better": true
        },
        {
          "metric": "prompt_level_loose_acc",
          "aggregation": "mean",
          "higher_is_better": true
        },
        {
          "metric": "inst_level_loose_acc",
          "aggregation": "def agg_inst_level_acc(items):\n    flat_items = [item for sublist in items for item in sublist]\n    inst_level_acc = sum(flat_items) / len(flat_items)\n    return inst_level_acc\n",
          "higher_is_better": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "until": [],
        "do_sample": false,
        "temperature": 0.0,
        "max_gen_toks": 1280
      },
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 2.0
      }
    }
  },
  "versions": {
    "leaderboard_ifeval": 2.0
  },
  "n-shot": {
    "leaderboard_ifeval": 0
  },
  "higher_is_better": {
    "leaderboard_ifeval": {
      "prompt_level_strict_acc": true,
      "inst_level_strict_acc": true,
      "prompt_level_loose_acc": true,
      "inst_level_loose_acc": true
    }
  },
  "n-samples": {
    "leaderboard_ifeval": {
      "original": 541,
      "effective": 541
    }
  },
  "config": {
    "model": "hf",
    "model_args": "pretrained=pankajmathur/orca_mini_v6_8b,dtype=bfloat16",
    "batch_size": "auto",
    "batch_sizes": [],
    "device": "cuda:0",
    "use_cache": "cache_pankajmathur/orca_mini_v6_8b/leaderboard_ifeval",
    "limit": null,
    "bootstrap_iters": 100000,
    "gen_kwargs": null,
    "random_seed": 0,
    "numpy_seed": 1234,
    "torch_seed": 1234,
    "fewshot_seed": 1234
  },
  "git_hash": "773209c",
  "date": 1720548070.8930266,
  "pretty_env_info": "PyTorch version: 2.2.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-60-generic-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: NVIDIA A100-SXM4-80GB\nNvidia driver version: 535.104.05\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture:                    x86_64\nCPU op-mode(s):                  32-bit, 64-bit\nAddress sizes:                   48 bits physical, 48 bits virtual\nByte Order:                      Little Endian\nCPU(s):                          256\nOn-line CPU(s) list:             0-255\nVendor ID:                       AuthenticAMD\nModel name:                      AMD EPYC 7763 64-Core Processor\nCPU family:                      25\nModel:                           1\nThread(s) per core:              2\nCore(s) per socket:              64\nSocket(s):                       2\nStepping:                        1\nFrequency boost:                 enabled\nCPU max MHz:                     3529.0520\nCPU min MHz:                     1500.0000\nBogoMIPS:                        4900.18\nFlags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca\nVirtualization:                  AMD-V\nL1d cache:                       4 MiB (128 instances)\nL1i cache:                       4 MiB (128 instances)\nL2 cache:                        64 MiB (128 instances)\nL3 cache:                        512 MiB (16 instances)\nNUMA node(s):                    8\nNUMA node0 CPU(s):               0-15,128-143\nNUMA node1 CPU(s):               16-31,144-159\nNUMA node2 CPU(s):               32-47,160-175\nNUMA node3 CPU(s):               48-63,176-191\nNUMA node4 CPU(s):               64-79,192-207\nNUMA node5 CPU(s):               80-95,208-223\nNUMA node6 CPU(s):               96-111,224-239\nNUMA node7 CPU(s):               112-127,240-255\nVulnerability Itlb multihit:     Not affected\nVulnerability L1tf:              Not affected\nVulnerability Mds:               Not affected\nVulnerability Meltdown:          Not affected\nVulnerability Mmio stale data:   Not affected\nVulnerability Retbleed:          Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2:        Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected\nVulnerability Srbds:             Not affected\nVulnerability Tsx async abort:   Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.3\n[pip3] torch==2.2.0\n[pip3] torchaudio==2.2.0\n[pip3] torchvision==0.17.0\n[pip3] triton==2.2.0\n[conda] Could not collect",
  "transformers_version": "4.42.3",
  "upper_git_hash": "be01651cf6b611c09f088c336db74ea625227716",
  "tokenizer_pad_token": [
    "<|end_of_text|>",
    "128001"
  ],
  "tokenizer_eos_token": [
    "<|im_end|>",
    "128256"
  ],
  "tokenizer_bos_token": [
    "<|begin_of_text|>",
    "128000"
  ],
  "eot_token_id": 128256,
  "max_length": 8192,
  "task_hashes": {},
  "model_source": "hf",
  "model_name": "pankajmathur/orca_mini_v6_8b",
  "model_name_sanitized": "pankajmathur__orca_mini_v6_8b",
  "system_instruction": null,
  "system_instruction_sha": null,
  "fewshot_as_multiturn": false,
  "chat_template": null,
  "chat_template_sha": null,
  "start_time": 25395358.46866597,
  "end_time": 25397357.615242016,
  "total_evaluation_time_seconds": "1999.1465760469437"
}