File size: 5,738 Bytes
efb9b7b
 
 
e2c8bd7
efb9b7b
 
e2c8bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb9b7b
 
 
 
 
 
 
 
a2d4a92
 
 
 
 
 
 
 
 
efb9b7b
 
 
 
 
a2d4a92
efb9b7b
 
 
 
 
 
 
f57c84d
 
 
 
 
 
 
efb9b7b
 
a2d4a92
efb9b7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2c8bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
---
language:
- en
license: llama3
library_name: transformers
pipeline_tag: text2text-generation
model-index:
- name: orca_mini_v5_8b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 48.06
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v5_8b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 29.35
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v5_8b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 7.85
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v5_8b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 4.92
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v5_8b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 7.7
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v5_8b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 23.07
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v5_8b
      name: Open LLM Leaderboard
---

**Model Name: llama_3_orca_mini_v5_8b**

# Llama-3-8b base model trained on Orca Style Mini Datasets

<img src="https://huggingface.co/pankajmathur/orca_mini_v5_8b/resolve/main/orca_minis_small.jpeg" width="auto" />

<strong>
Passionate about Generative AI? I help companies to privately train and deploy custom LLM/MLLM affordably. For startups, I can even assist with securing GPU grants to get you started. Let's chat!

<a href="https://www.linkedin.com/in/pankajam" target="_blank">https://www.linkedin.com/in/pankajam</a> Looking forward to connecting!
</strong>

<br>

### NOTICE

By providing proper credit and attribution, you are granted permission to use this model as a foundational base for further DPO/PPO tuning or Merges. 
I actively encourage users to customize and enhance the model according to their specific needs, as this version is designed to be a comprehensive, fully fine-tuned general model. 
Dive in and innovate!

### Evaluation

We evaluated this model on a wide range of tasks using [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) from EleutherAI. 

Here are the results on similar metrics used by [HuggingFaceH4 Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |67.28|
|AI2 Reasoning Challenge (25-Shot)|60.92|
|HellaSwag (10-Shot)              |81.78|
|MMLU (5-Shot)                    |64.97|
|TruthfulQA (0-shot)              |55.04|
|Winogrande (5-shot)              |73.40|
|GSM8k (5-shot)                   |67.55|


### Example Usage

Here is the ChatML prompt format

```
<|im_start|>system
You are Orca Mini, a helpful AI assistant.<|im_end|>
<|im_start|>user
Hello Orca Mini, what can you do for me?<|im_end|>
<|im_start|>assistant
```

Below shows a code example on how to use this model

```python
from transformers import AutoModel, AutoTokenizer
model_slug = "pankajmathur/orca_mini_v5_8b"
model = AutoModel.from_pretrained(model_slug)
tokenizer = AutoTokenizer.from_pretrained(model_slug)

messages = [
    {"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
    {"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
]

gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
model.generate(**gen_input)
```
This model is governed by [META LLAMA 3 COMMUNITY LICENSE AGREEMENT](LICENSE)

**Quants**

GGUF : Coming Soon

AWQ: Coming Soon


# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_pankajmathur__orca_mini_v5_8b)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |20.16|
|IFEval (0-Shot)    |48.06|
|BBH (3-Shot)       |29.35|
|MATH Lvl 5 (4-Shot)| 7.85|
|GPQA (0-shot)      | 4.92|
|MuSR (0-shot)      | 7.70|
|MMLU-PRO (5-shot)  |23.07|