File size: 2,155 Bytes
50eeb00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
datasets:
- boolq
metrics:
- rouge
model-index:
- name: pal_team_tfq_generation
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: boolq
type: boolq
config: default
split: validation
args: default
metrics:
- name: Rouge1
type: rouge
value: 0.3793
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pal_team_tfq_generation
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the boolq dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8807
- Rouge1: 0.3793
- Rouge2: 0.1737
- Rougel: 0.3534
- Rougelsum: 0.3535
- Gen Len: 12.7453
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 2.4543 | 1.0 | 1179 | 2.0285 | 0.3608 | 0.1524 | 0.3326 | 0.3326 | 12.3572 |
| 2.2496 | 2.0 | 2358 | 1.9305 | 0.3706 | 0.163 | 0.343 | 0.3432 | 12.7278 |
| 2.1221 | 3.0 | 3537 | 1.8922 | 0.3779 | 0.1725 | 0.3516 | 0.3519 | 12.6859 |
| 2.1428 | 4.0 | 4716 | 1.8807 | 0.3793 | 0.1737 | 0.3534 | 0.3535 | 12.7453 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|