|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-large |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: pakawadeep/mt5-large-finetuned-ctfl-augmented_05 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# pakawadeep/mt5-large-finetuned-ctfl-augmented_05 |
|
|
|
This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 1.0516 |
|
- Validation Loss: 0.8511 |
|
- Train Rouge1: 8.3805 |
|
- Train Rouge2: 2.4257 |
|
- Train Rougel: 8.4158 |
|
- Train Rougelsum: 8.4158 |
|
- Train Gen Len: 12.0149 |
|
- Epoch: 5 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |
|
|:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| |
|
| 5.3441 | 2.0990 | 3.1931 | 0.4400 | 3.2577 | 3.2151 | 12.2277 | 0 | |
|
| 2.2977 | 1.5680 | 7.0014 | 1.0891 | 7.0651 | 6.9307 | 11.3267 | 1 | |
|
| 1.7363 | 1.2611 | 7.0674 | 1.0891 | 7.1287 | 7.0745 | 11.5545 | 2 | |
|
| 1.4302 | 1.0860 | 8.3805 | 2.4257 | 8.4158 | 8.4158 | 11.8069 | 3 | |
|
| 1.2082 | 0.9516 | 8.3805 | 2.4257 | 8.4158 | 8.4158 | 11.8861 | 4 | |
|
| 1.0516 | 0.8511 | 8.3805 | 2.4257 | 8.4158 | 8.4158 | 12.0149 | 5 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- TensorFlow 2.15.0 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|