File size: 2,127 Bytes
002b958
 
 
 
5a7c81f
002b958
5a7c81f
002b958
5a7c81f
 
 
 
 
002b958
 
5a7c81f
002b958
7c51e4a
002b958
7c51e4a
002b958
7c51e4a
002b958
7c51e4a
002b958
 
 
5a7c81f
002b958
5a7c81f
002b958
5a7c81f
 
 
 
 
002b958
18a1ca4
002b958
5a7c81f
 
 
 
002b958
5a7c81f
 
002b958
5a7c81f
 
 
 
 
 
 
 
 
002b958
5a7c81f
002b958
 
 
5a7c81f
002b958
5a7c81f
 
 
 
 
 
 
002b958
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: diffusers
---

# Paint by Inpaint: Learning to Add Image Objects by Removing Them First

The model is designed for instruction-following object addition to images.

We offer four different models:
- Trained on the PIPE dataset, specifically designed for object addition.
- The object addition model fine-tuned on a MagicBrush addition subset.
- **Trained on the combined PIPE and InstructPix2Pix datasets, intended for general editing (This one).**
- The general model fine-tuned on the full MagicBrush dataset.


## Resources

- πŸ’» [**Visit Project Page**](https://rotsteinnoam.github.io/Paint-by-Inpaint/)

- πŸ“ [**Read the Paper**](https://arxiv.org/abs/2404.18212)

- πŸš€ [**Try Our Demo**](https://huggingface.co/spaces/paint-by-inpaint/demo)

- πŸ—‚οΈ [**Use PIPE Dataset**](https://huggingface.co/datasets/paint-by-inpaint/PIPE)



#### Running the model

The model is simple to run using the InstructPix2Pix pipeline:

```python
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
import torch
import requests
from io import BytesIO

model_name = "paint-by-inpaint/general-base"

diffusion_steps = 50
device = "cuda"
image_url = "https://paint-by-inpaint-demo.hf.space/file=/tmp/gradio/99cd3a15aa9bdd3220b4063ebc3ac05e07a611b8/messi.jpeg"
image = Image.open(BytesIO(requests.get(image_url).content)).resize((512, 512))

pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_name, torch_dtype=torch.float16, safety_checker=None).to(device)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)

# Generate the modified image
out_images = pipe(
    "Add a royal silver crown", 
    image=image, 
    guidance_scale=7, 
    image_guidance_scale=1.5, 
    num_inference_steps=diffusion_steps,
    num_images_per_prompt=1
).images

```



## BibTeX

``` Citation
@article{wasserman2024paint,
  title={Paint by Inpaint: Learning to Add Image Objects by Removing Them First},
  author={Wasserman, Navve and Rotstein, Noam and Ganz, Roy and Kimmel, Ron},
  journal={arXiv preprint arXiv:2404.18212},
  year={2024}
}