File size: 2,321 Bytes
487ae13 c757f47 487ae13 c757f47 487ae13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-lora-text-classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6215
- Accuracy: {'accuracy': 0.8248666666666666}
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------------------------------:|
| 0.4666 | 1.0 | 7500 | 0.5550 | {'accuracy': 0.8414} |
| 0.537 | 2.0 | 15000 | 0.5152 | {'accuracy': 0.8277666666666667} |
| 0.5576 | 3.0 | 22500 | 0.4929 | {'accuracy': 0.8178} |
| 0.5947 | 4.0 | 30000 | 0.4912 | {'accuracy': 0.8104} |
| 0.5841 | 5.0 | 37500 | 0.5970 | {'accuracy': 0.8050666666666667} |
| 0.6447 | 6.0 | 45000 | 0.6422 | {'accuracy': 0.8114333333333333} |
| 0.5955 | 7.0 | 52500 | 0.5771 | {'accuracy': 0.8209} |
| 0.5419 | 8.0 | 60000 | 0.5765 | {'accuracy': 0.821} |
| 0.5966 | 9.0 | 67500 | 0.6055 | {'accuracy': 0.8230666666666666} |
| 0.5417 | 10.0 | 75000 | 0.6215 | {'accuracy': 0.8248666666666666} |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.13.2
|