|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: emilyalsentzer/Bio_ClinicalBERT |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: BioMedRoBERTa-finetuned-ner-pablo-just-classifier |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# BioMedRoBERTa-finetuned-ner-pablo-just-classifier |
|
|
|
This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1150 |
|
- Precision: 0.6869 |
|
- Recall: 0.7076 |
|
- F1: 0.6971 |
|
- Accuracy: 0.9677 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.1 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 512 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine_with_restarts |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 0.9655 | 14 | 0.3729 | 0.4205 | 0.6119 | 0.4985 | 0.9430 | |
|
| No log | 2.0 | 29 | 0.2544 | 0.5272 | 0.6683 | 0.5894 | 0.9574 | |
|
| No log | 2.9655 | 43 | 0.2117 | 0.5702 | 0.6884 | 0.6238 | 0.9604 | |
|
| No log | 4.0 | 58 | 0.1747 | 0.5934 | 0.7001 | 0.6424 | 0.9628 | |
|
| No log | 4.9655 | 72 | 0.1420 | 0.6280 | 0.6827 | 0.6542 | 0.9642 | |
|
| No log | 6.0 | 87 | 0.1287 | 0.6639 | 0.7033 | 0.6830 | 0.9667 | |
|
| No log | 6.9655 | 101 | 0.1309 | 0.6471 | 0.7009 | 0.6729 | 0.9654 | |
|
| No log | 8.0 | 116 | 0.1260 | 0.6349 | 0.7199 | 0.6748 | 0.9652 | |
|
| No log | 8.9655 | 130 | 0.1159 | 0.6621 | 0.7118 | 0.6860 | 0.9670 | |
|
| No log | 9.6552 | 140 | 0.1150 | 0.6869 | 0.7076 | 0.6971 | 0.9677 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.1 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|