Training complete
Browse files
README.md
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
metrics:
|
@@ -18,13 +19,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
# BioMedRoBERTa-finetuned-ner-pablo-just-classifier
|
20 |
|
21 |
-
This model is a fine-tuned version of [
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Precision: 0.
|
25 |
-
- Recall: 0.
|
26 |
-
- F1: 0.
|
27 |
-
- Accuracy: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -44,24 +45,31 @@ More information needed
|
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
- learning_rate: 0.1
|
47 |
-
- train_batch_size:
|
48 |
-
- eval_batch_size:
|
49 |
- seed: 42
|
|
|
|
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
-
- lr_scheduler_type:
|
52 |
- lr_scheduler_warmup_ratio: 0.05
|
53 |
-
- num_epochs:
|
54 |
- mixed_precision_training: Native AMP
|
55 |
|
56 |
### Training results
|
57 |
|
58 |
-
| Training Loss | Epoch
|
59 |
-
|
60 |
-
|
|
61 |
-
|
|
62 |
-
|
|
63 |
-
|
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
|
67 |
### Framework versions
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: emilyalsentzer/Bio_ClinicalBERT
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
metrics:
|
|
|
19 |
|
20 |
# BioMedRoBERTa-finetuned-ner-pablo-just-classifier
|
21 |
|
22 |
+
This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.1150
|
25 |
+
- Precision: 0.6869
|
26 |
+
- Recall: 0.7076
|
27 |
+
- F1: 0.6971
|
28 |
+
- Accuracy: 0.9677
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
45 |
|
46 |
The following hyperparameters were used during training:
|
47 |
- learning_rate: 0.1
|
48 |
+
- train_batch_size: 128
|
49 |
+
- eval_batch_size: 128
|
50 |
- seed: 42
|
51 |
+
- gradient_accumulation_steps: 4
|
52 |
+
- total_train_batch_size: 512
|
53 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
+
- lr_scheduler_type: cosine_with_restarts
|
55 |
- lr_scheduler_warmup_ratio: 0.05
|
56 |
+
- num_epochs: 10
|
57 |
- mixed_precision_training: Native AMP
|
58 |
|
59 |
### Training results
|
60 |
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
62 |
+
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
63 |
+
| No log | 0.9655 | 14 | 0.3729 | 0.4205 | 0.6119 | 0.4985 | 0.9430 |
|
64 |
+
| No log | 2.0 | 29 | 0.2544 | 0.5272 | 0.6683 | 0.5894 | 0.9574 |
|
65 |
+
| No log | 2.9655 | 43 | 0.2117 | 0.5702 | 0.6884 | 0.6238 | 0.9604 |
|
66 |
+
| No log | 4.0 | 58 | 0.1747 | 0.5934 | 0.7001 | 0.6424 | 0.9628 |
|
67 |
+
| No log | 4.9655 | 72 | 0.1420 | 0.6280 | 0.6827 | 0.6542 | 0.9642 |
|
68 |
+
| No log | 6.0 | 87 | 0.1287 | 0.6639 | 0.7033 | 0.6830 | 0.9667 |
|
69 |
+
| No log | 6.9655 | 101 | 0.1309 | 0.6471 | 0.7009 | 0.6729 | 0.9654 |
|
70 |
+
| No log | 8.0 | 116 | 0.1260 | 0.6349 | 0.7199 | 0.6748 | 0.9652 |
|
71 |
+
| No log | 8.9655 | 130 | 0.1159 | 0.6621 | 0.7118 | 0.6860 | 0.9670 |
|
72 |
+
| No log | 9.6552 | 140 | 0.1150 | 0.6869 | 0.7076 | 0.6971 | 0.9677 |
|
73 |
|
74 |
|
75 |
### Framework versions
|