File size: 7,849 Bytes
8d4a5ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
010caf6
 
 
 
 
 
8d4a5ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
010caf6
8d4a5ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
010caf6
8d4a5ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import logging
import os
import json
from typing import Optional, Dict, List, Set, Tuple, Union, Literal, Type
from pydantic.dataclasses import dataclass

import numpy as np
from numpy.typing import NDArray

from transformers import PreTrainedTokenizerFast

logger = logging.getLogger(__name__)

VOCAB_FILES_NAMES = {
    "tag_category": "tag_category.json",
}

PRETRAINED_VOCAB_FILES_MAP = {
    "tag_category": {
        "p1atdev/tokenizer_test_1": "https://huggingface.co/p1atdev/tokenizer_test_1/resolve/main/tag_category.json"
    }
}


@dataclass
class Category:
    name: str
    max_count: Optional[int]
    next_category: List[int]
    can_end: bool
    bos_token_id: int
    eos_token_id: int
    default_mask: int


@dataclass
class SpecialMapping:
    allow: List[int]
    disallow: List[int]


@dataclass
class TagCategoryConfig:
    start_category: int
    categories: Dict[str, Category]
    special_mapping: Dict[
        str, Dict[str, SpecialMapping]
    ]  # {token_id: { category_id: SpecialMapping }}
    category_tags_pairs: Dict[str, List[int]]


class OverrideMask:
    allow: np.ndarray
    disallow: np.ndarray

    def __init__(self, allow: np.ndarray, disallow: np.ndarray) -> None:
        self.allow = allow
        self.disallow = disallow


def load_tag_category(config_json: str):
    with open(config_json, "rb") as file:
        config: TagCategoryConfig = TagCategoryConfig(**json.loads(file.read()))

    return config


class DartTokenizer(PreTrainedTokenizerFast):
    """Dart tokenizer"""

    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP

    def __init__(self, tag_category, **kwargs):
        super().__init__(**kwargs)

        self.tag_category_config = load_tag_category(tag_category)

        self.category_bos_map = {
            category.bos_token_id: category_id
            for category_id, category in self.tag_category_config.categories.items()
        }
        self.category_eos_map = {
            category.eos_token_id: category_id
            for category_id, category in self.tag_category_config.categories.items()
        }

        self._id_to_category_map = np.zeros(self.vocab_size).astype("uint8")
        for category_id, tokens in self.tag_category_config.category_tags_pairs.items():
            self._id_to_category_map[tokens] = int(category_id)

        self.category_mask = self.create_category_vocab_mask()

    def create_vocab_mask(self, value: int = 1):
        """Create an array of vocab size filled with specified value"""
        return np.full(self.vocab_size, value).astype("uint8")

    def create_category_vocab_mask(self):
        """Create vocab masks for each category"""
        return {
            category_id: self.create_vocab_mask(
                value=category.default_mask,
            )
            for category_id, category in self.tag_category_config.categories.items()
        }

    def get_token_ids_in_category(self, category_id: Union[int, str]):
        """Get token ids in the specified category"""
        return self.tag_category_config.category_tags_pairs[str(category_id)]

    def get_category(self, category_id: Union[int, str]):
        """Get the specified category config"""
        return self.tag_category_config.categories[str(category_id)]

    def get_special_mapping(self, token_id: Union[int, str]):
        """Get the special mapping of specified token id"""
        return self.tag_category_config.special_mapping[str(token_id)]

    def get_banned_tokens_mask(self, tokens: Union[str, List[str], int, List[int]]):
        if isinstance(tokens, str):
            tokens = [tokens]
        elif isinstance(tokens, int):
            tokens = [tokens]
        elif isinstance(tokens, list):
            tokens = [
                self.convert_tokens_to_ids(token) if isinstance(token, str) else token
                for token in tokens
            ]

        assert isinstance(tokens, list) and all(
            [isinstance(token, int) for token in tokens]
        )

        mask = self.create_vocab_mask(value=1)
        mask[tokens] = 0

        return mask

    def convert_ids_to_category_ids(self, token_ids: Union[int, List[int]]):
        return self._id_to_category_map[token_ids]

    def get_next_tokens_mask(
        self,
        input_ids: List[int],
        category_mask: Optional[Dict[str, np.ndarray]] = None,
    ) -> Tuple[np.ndarray, Dict[str, np.ndarray]]:
        """Get the next token's vocab mask and a category mask"""

        if category_mask == None:
            category_mask = self.category_mask

        vocab_mask = self.create_vocab_mask(value=0)

        if len(input_ids) == 0:
            # only allow bos token
            vocab_mask[self.bos_token_id] = 1

            return vocab_mask, category_mask

        # the last token's id in the input ids
        last_token_id = input_ids[-1]

        if last_token_id == self.unk_token_id:
            # unknown token
            logger.warning(
                "The unk_token was provided! The vocab mask could not be created properly."
            )
            return self.create_vocab_mask(value=1), category_mask

        # if the last token has a special mapping
        if str(last_token_id) in self.tag_category_config.special_mapping.keys():
            for category_id, mapping in self.get_special_mapping(last_token_id).items():
                # update mask
                category_mask[category_id][mapping.allow] = 1
                category_mask[category_id][mapping.disallow] = 0

        if last_token_id == self.bos_token_id:
            # the first category
            start_category_id = self.tag_category_config.start_category
            start_category = self.get_category(start_category_id)

            # only allow the next category's bos token
            vocab_mask[start_category.bos_token_id] = 1

            return vocab_mask, category_mask

        elif last_token_id == self.eos_token_id:
            # end of text. only allows pad token

            vocab_mask[self.pad_token_id] = 1

            return vocab_mask, category_mask

        elif last_token_id in self.category_bos_map:
            # begin of category

            # only allow same category's tags
            current_category_id = self.category_bos_map[last_token_id]
            category = self.get_category(current_category_id)

            tokens_in_category = self.get_token_ids_in_category(current_category_id)
            vocab_mask[tokens_in_category] = 1

            vocab_mask *= category_mask[str(current_category_id)]
            vocab_mask[category.eos_token_id] = 1

            return vocab_mask, category_mask  # current category's mask

        elif last_token_id in self.category_eos_map:
            # boundary of categories

            current_category_id = self.category_eos_map[last_token_id]
            category = self.get_category(current_category_id)

            if category.can_end:
                # this category can finish generation
                vocab_mask[self.eos_token_id] = 1

            for next_category_id in category.next_category:
                # allow the next category's bos token
                vocab_mask[self.get_category(next_category_id).bos_token_id] = 1

            return vocab_mask, category_mask

        else:
            # inside each category
            current_category_id = self.convert_ids_to_category_ids(last_token_id).item()
            tokens_in_category = self.get_token_ids_in_category(current_category_id)

            vocab_mask[tokens_in_category] = 1
            vocab_mask[self.get_category(current_category_id).eos_token_id] = 1
            vocab_mask *= category_mask[str(current_category_id)]
            vocab_mask[input_ids] = 0  # do not reuse used tokens

            return vocab_mask, category_mask