license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
base_model: google/vit-base-patch16-224-in21k
model-index:
- name: vit-artworkclassifier
results:
- task:
type: image-classification
name: Image Classification
dataset:
name: imagefolder
type: imagefolder
config: artbench10-vit
split: test
args: artbench10-vit
metrics:
- type: accuracy
value: 0.5947786606129398
name: Accuracy
vit-artworkclassifier
This model returns the artwork style of any image input.
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. This is a subset of the artbench-10 dataset (https://www.kaggle.com/datasets/alexanderliao/artbench10), with a train set of 1000 artworks per class and a validation set of 100 artworks per class. It achieves the following results on the evaluation set:
- Loss: 1.1392
- Accuracy: 0.5948
Model description
You can find a description of the project that this model was trained for here: https://medium.com/@oliverpj.schamp/training-and-evaluating-stable-diffusion-for-artwork-generation-b099d1f5b7a6
Intended uses & limitations
This model only contains 9 out of the 10 artbench-10 classes - it does not contain ukiyo_e. This was due to availability and formatting issues.
Training and evaluation data
Train: 1000 randomly selected images from artbench-10 (per class). Val: 100 randomly selected images from artbench-10 (per class).
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.5906 | 0.36 | 100 | 1.4709 | 0.4847 |
1.3395 | 0.72 | 200 | 1.3208 | 0.5074 |
1.1461 | 1.08 | 300 | 1.3363 | 0.5165 |
0.9593 | 1.44 | 400 | 1.1790 | 0.5846 |
0.8761 | 1.8 | 500 | 1.1252 | 0.5902 |
0.5922 | 2.16 | 600 | 1.1392 | 0.5948 |
0.4803 | 2.52 | 700 | 1.1560 | 0.5936 |
0.4454 | 2.88 | 800 | 1.1545 | 0.6118 |
0.2271 | 3.24 | 900 | 1.2284 | 0.6039 |
0.207 | 3.6 | 1000 | 1.2625 | 0.5959 |
0.1958 | 3.96 | 1100 | 1.2621 | 0.6005 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
Code to Run
def vit_classify(image):
vit = ViTForImageClassification.from_pretrained("oschamp/vit-artworkclassifier")
vit.eval()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
vit.to(device)
model_name_or_path = 'google/vit-base-patch16-224-in21k'
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name_or_path)
#LOAD IMAGE
encoding = feature_extractor(images=image, return_tensors="pt")
encoding.keys()
pixel_values = encoding['pixel_values'].to(device)
outputs = vit(pixel_values)
logits = outputs.logits
prediction = logits.argmax(-1)
return prediction.item() #vit.config.id2label[prediction.item()]