phi-3-mini-LoRA

This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8588

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.0606 0.1071 100 1.0032
0.9107 0.2141 200 0.9256
0.8783 0.3212 300 0.9081
0.8761 0.4283 400 0.8986
0.8651 0.5353 500 0.8920
0.864 0.6424 600 0.8875
0.8759 0.7495 700 0.8828
0.8584 0.8565 800 0.8807
0.8677 0.9636 900 0.8784
0.8507 1.0707 1000 0.8757
0.8499 1.1777 1100 0.8739
0.8446 1.2848 1200 0.8718
0.8637 1.3919 1300 0.8712
0.8238 1.4989 1400 0.8686
0.8231 1.6060 1500 0.8681
0.8361 1.7131 1600 0.8661
0.8319 1.8201 1700 0.8652
0.8166 1.9272 1800 0.8643
0.8312 2.0343 1900 0.8634
0.834 2.1413 2000 0.8625
0.8362 2.2484 2100 0.8616
0.8413 2.3555 2200 0.8611
0.8153 2.4625 2300 0.8605
0.8235 2.5696 2400 0.8607
0.7958 2.6767 2500 0.8598
0.8137 2.7837 2600 0.8593
0.8162 2.8908 2700 0.8591
0.8317 2.9979 2800 0.8588

Framework versions

  • PEFT 0.12.0
  • Transformers 4.43.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for oscarwang2/phi-3-mini-LoRA

Adapter
(335)
this model