metadata
license: gpl-3.0
tags:
- generated_from_trainer
datasets:
- mim_gold_ner
metrics:
- precision
- recall
- f1
- accuracy
widget:
- text: >-
Systurnar Guðrún og Monique átu einar á McDonalds og horfðu á Stöð 2, þar
glitti í Bruce Willis leika í Die Hard 2.
model-index:
- name: IceBERT-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: mim_gold_ner
type: mim_gold_ner
args: mim-gold-ner
metrics:
- name: Precision
type: precision
value: 0.89397115028973
- name: Recall
type: recall
value: 0.8664117576771418
- name: F1
type: f1
value: 0.8799757281553399
- name: Accuracy
type: accuracy
value: 0.9854156499755994
IceBERT-finetuned-ner
This model is a fine-tuned version of vesteinn/IceBERT on the mim_gold_ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.0802
- Precision: 0.8940
- Recall: 0.8664
- F1: 0.8800
- Accuracy: 0.9854
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0528 | 1.0 | 2904 | 0.0779 | 0.8829 | 0.8504 | 0.8663 | 0.9831 |
0.0274 | 2.0 | 5808 | 0.0784 | 0.8802 | 0.8585 | 0.8692 | 0.9839 |
0.0162 | 3.0 | 8712 | 0.0802 | 0.8940 | 0.8664 | 0.8800 | 0.9854 |
Framework versions
- Transformers 4.11.1
- Pytorch 1.9.0+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3