File size: 29,428 Bytes
c9e4fad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
# Copyright 2024 **AUTHORS_TODO**
# License: Apache-2.0

# Copyright 2022 MosaicML Examples authors
# SPDX-License-Identifier: Apache-2.0

# Copyright 2023 MosaicML Examples authors
# SPDX-License-Identifier: Apache-2.0

# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018-2021, NVIDIA CORPORATION.  All rights reserved.
# Copyright (c) 2023, Tri Dao.


import copy
import math
import warnings
from typing import Optional, Union, List

import torch
import torch.nn as nn

from .bert_padding import unpad_input, pad_input

from .activation import get_act_fn
from .attention import FlexBertAttentionBase, BertAlibiUnpadAttention, get_attention_layer
from .mlp import FlexBertMLPBase, BertResidualGLU, get_mlp_layer
from .configuration_bert import FlexBertConfig, maybe_add_padding
from .normalization import get_norm_layer
from .initialization import ModuleType, init_weights


class BertAlibiLayer(nn.Module):
    """Composes the Mosaic BERT attention and FFN blocks into a single layer."""

    def __init__(self, config):
        super().__init__()
        self.attention = BertAlibiUnpadAttention(config)
        self.mlp = BertResidualGLU(config)

    def forward(
        self,
        hidden_states: torch.Tensor,
        cu_seqlens: torch.Tensor,
        seqlen: int,
        subset_idx: Optional[torch.Tensor] = None,
        indices: Optional[torch.Tensor] = None,
        attn_mask: Optional[torch.Tensor] = None,
        bias: Optional[torch.Tensor] = None,
        slopes: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        """Forward pass for a BERT layer, including both attention and MLP.

        Args:
            hidden_states: (total_nnz, dim)
            cu_seqlens: (batch + 1,)
            seqlen: int
            subset_idx: () set of indices whose values we care about at the end of the layer
                        (e.g., the masked tokens, if this is the final layer).
            indices: None or (total_nnz,)
            attn_mask: None or (batch, max_seqlen_in_batch)
            bias: None or (batch, heads, max_seqlen_in_batch, max_seqlen_in_batch)
            slopes: None or (batch, heads) or (heads,)
        """
        assert (bias is None) == (slopes is None), f"{bias=}, {slopes=}"
        attention_output = self.attention(
            hidden_states, cu_seqlens, seqlen, subset_idx, indices, attn_mask, bias, slopes
        )
        layer_output = self.mlp(attention_output)
        return layer_output


class BertAlibiEncoder(nn.Module):
    """A stack of BERT layers providing the backbone of Mosaic BERT.

    This module is modeled after the Hugging Face BERT's :class:`~transformers.model.bert.modeling_bert.BertAlibiEncoder`,
    but with substantial modifications to implement unpadding and ALiBi.

    Compared to the analogous Hugging Face BERT module, this module handles unpadding to reduce unnecessary computation
    at padded tokens, and pre-computes attention biases to implement ALiBi.
    """

    def __init__(self, config):
        super().__init__()
        layer = BertAlibiLayer(config)
        self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])

        self.num_attention_heads = config.num_attention_heads

        # The alibi mask will be dynamically expanded if it is too small for
        # the input the model receives. But it generally helps to initialize it
        # to a reasonably large size to help pre-allocate CUDA memory.
        # The default `alibi_starting_size` is 512.
        self._current_alibi_size = int(config.alibi_starting_size)
        self.alibi = torch.zeros((1, self.num_attention_heads, self._current_alibi_size, self._current_alibi_size))
        self.rebuild_alibi_tensor(size=config.alibi_starting_size)

    def rebuild_alibi_tensor(self, size: int, device: Optional[Union[torch.device, str]] = None):
        # Alibi
        # Following https://github.com/ofirpress/attention_with_linear_biases/issues/5 (Implementation 1)
        # In the causal case, you can exploit the fact that softmax is invariant to a uniform translation
        # of the logits, which makes the math work out *after* applying causal masking. If no causal masking
        # will be applied, it is necessary to construct the diagonal mask.
        n_heads = self.num_attention_heads

        def _get_alibi_head_slopes(n_heads: int) -> List[float]:
            def get_slopes_power_of_2(n_heads: int) -> List[float]:
                start = 2 ** (-(2 ** -(math.log2(n_heads) - 3)))
                ratio = start
                return [start * ratio**i for i in range(n_heads)]

            # In the paper, they only train models that have 2^a heads for some a. This function
            # has some good properties that only occur when the input is a power of 2. To
            # maintain that even when the number of heads is not a power of 2, we use a
            # workaround.
            if math.log2(n_heads).is_integer():
                return get_slopes_power_of_2(n_heads)

            closest_power_of_2 = 2 ** math.floor(math.log2(n_heads))
            slopes_a = get_slopes_power_of_2(closest_power_of_2)
            slopes_b = _get_alibi_head_slopes(2 * closest_power_of_2)
            slopes_b = slopes_b[0::2][: n_heads - closest_power_of_2]
            return slopes_a + slopes_b

        context_position = torch.arange(size, device=device)[:, None]
        memory_position = torch.arange(size, device=device)[None, :]
        relative_position = torch.abs(memory_position - context_position)
        # [n_heads, max_token_length, max_token_length]
        relative_position = relative_position.unsqueeze(0).expand(n_heads, -1, -1)
        slopes = torch.Tensor(_get_alibi_head_slopes(n_heads)).to(device)
        self.slopes = slopes
        alibi = slopes.unsqueeze(1).unsqueeze(1) * -relative_position
        # [1, n_heads, max_token_length, max_token_length]
        alibi = alibi.unsqueeze(0)
        assert alibi.shape == torch.Size([1, n_heads, size, size])

        self._current_alibi_size = size
        self.alibi = alibi

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        output_all_encoded_layers: Optional[bool] = True,
        subset_mask: Optional[torch.Tensor] = None,
    ) -> List[torch.Tensor]:
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

        attention_mask_bool = attention_mask.bool()
        batch, seqlen = hidden_states.shape[:2]
        # Unpad inputs and mask. It will remove tokens that are padded.
        # Assume ntokens is total number of tokens (padded and non-padded)
        # and ntokens_unpad is total number of non-padded tokens.
        # Then unpadding performs the following compression of the inputs:
        # hidden_states[ntokens,hidden] -> hidden_states[ntokens_unpad,hidden]
        hidden_states, indices, cu_seqlens, _ = unpad_input(hidden_states, attention_mask_bool)

        # Add alibi matrix to extended_attention_mask
        if self._current_alibi_size < seqlen:
            # Rebuild the alibi tensor when needed
            warnings.warn(f"Increasing alibi size from {self._current_alibi_size} to {seqlen}")
            self.rebuild_alibi_tensor(size=seqlen, device=hidden_states.device)
        elif self.alibi.device != hidden_states.device:
            # Device catch-up
            self.alibi = self.alibi.to(hidden_states.device)
            self.slopes = self.slopes.to(hidden_states.device)  # type: ignore
        alibi_bias = self.alibi[:, :, :seqlen, :seqlen]
        attn_bias = extended_attention_mask[:, :, :seqlen, :seqlen]
        alibi_attn_mask = attn_bias + alibi_bias

        all_encoder_layers = []
        if subset_mask is None:
            for layer_module in self.layer:
                hidden_states = layer_module(
                    hidden_states,
                    cu_seqlens,
                    seqlen,
                    None,
                    indices,
                    attn_mask=attention_mask,
                    bias=alibi_attn_mask,
                    slopes=self.slopes,
                )
                if output_all_encoded_layers:
                    all_encoder_layers.append(hidden_states)
            # Pad inputs and mask. It will insert back zero-padded tokens.
            # Assume ntokens is total number of tokens (padded and non-padded)
            # and ntokens_unpad is total number of non-padded tokens.
            # Then padding performs the following de-compression:
            #     hidden_states[ntokens_unpad,hidden] -> hidden_states[ntokens,hidden]
            hidden_states = pad_input(hidden_states, indices, batch, seqlen)
        else:
            for i in range(len(self.layer) - 1):
                layer_module = self.layer[i]
                hidden_states = layer_module(
                    hidden_states,
                    cu_seqlens,
                    seqlen,
                    None,
                    indices,
                    attn_mask=attention_mask,
                    bias=alibi_attn_mask,
                    slopes=self.slopes,
                )
                if output_all_encoded_layers:
                    all_encoder_layers.append(hidden_states)
            subset_idx = torch.nonzero(subset_mask[attention_mask_bool], as_tuple=False).flatten()
            hidden_states = self.layer[-1](
                hidden_states,
                cu_seqlens,
                seqlen,
                subset_idx=subset_idx,
                indices=indices,
                attn_mask=attention_mask,
                bias=alibi_attn_mask,
                slopes=self.slopes,
            )

        if not output_all_encoded_layers:
            all_encoder_layers.append(hidden_states)
        return all_encoder_layers


class BertPooler(nn.Module):
    def __init__(self, config):
        super(BertPooler, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states: torch.Tensor, pool: Optional[bool] = True) -> torch.Tensor:
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0] if pool else hidden_states
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        if isinstance(config.hidden_act, str):
            self.transform_act_fn = get_act_fn(config.head_pred_act)
        else:
            self.transform_act_fn = config.hidden_act
        self.LayerNorm = get_norm_layer(config)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class FlexBertLayerBase(nn.Module):
    """A FlexBERT Layer base class for type hints."""

    attn: FlexBertAttentionBase
    mlp: FlexBertMLPBase

    def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
        super().__init__()
        self.config = config
        self.layer_id = layer_id

    def _init_weights(self, reset_params: bool = False):
        if hasattr(self, "attn"):
            self.attn._init_weights(reset_params)
        if hasattr(self, "mlp"):
            self.mlp._init_weights(reset_params)

    def reset_parameters(self):
        self._init_weights(reset_params=True)

    def forward(self, hidden_states: torch.Tensor, attn_mask: Optional[torch.Tensor] = None, **kwargs) -> torch.Tensor:
        raise NotImplementedError("This is a base class and should not be used directly.")


class FlexBertCompileUnpadPreNormLayer(FlexBertLayerBase):
    """Composes the FlexBERT attention and MLP blocks into a single layer using pre-normalization."""

    def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
        super().__init__(config=config, layer_id=layer_id)
        if config.skip_first_prenorm and config.embed_norm and layer_id == 0:
            self.attn_norm = nn.Identity()
        else:
            self.attn_norm = get_norm_layer(config)
        self.attn = get_attention_layer(config, layer_id=layer_id)
        self.mlp_norm = get_norm_layer(config, compiled_norm=config.compile_model)
        self.mlp = get_mlp_layer(config, layer_id=layer_id)
        self.compile_model = config.compile_model

    def _init_weights(self, reset_params: bool = False):
        super()._init_weights(reset_params)
        if reset_params:
            self.attn_norm.reset_parameters()
            self.mlp_norm.reset_parameters()

    @torch.compile(dynamic=True)
    def compiled_mlp(self, hidden_states: torch.Tensor) -> torch.Tensor:
        return self.mlp(self.mlp_norm(hidden_states))

    def forward(
        self,
        hidden_states: torch.Tensor,
        cu_seqlens: torch.Tensor,
        max_seqlen: int,
        indices: Optional[torch.Tensor] = None,
        attn_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        """Forward pass for a BERT layer, including both attention and MLP.

        Args:
            hidden_states: (total_nnz, dim)
            cu_seqlens: (batch + 1,)
            max_seqlen: int
            indices: None or (total_nnz,)
            attn_mask: None or (batch, max_seqlen)
        """
        attn_out = hidden_states + self.attn(self.attn_norm(hidden_states), cu_seqlens, max_seqlen, indices, attn_mask)
        return attn_out + self.compiled_mlp(attn_out)


class FlexBertUnpadPreNormLayer(FlexBertLayerBase):
    """Composes the FlexBERT attention and MLP blocks into a single layer using pre-normalization."""

    def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
        super().__init__(config=config, layer_id=layer_id)
        if config.skip_first_prenorm and config.embed_norm and layer_id == 0:
            self.attn_norm = nn.Identity()
        else:
            self.attn_norm = get_norm_layer(config)
        self.attn = get_attention_layer(config, layer_id=layer_id)
        self.mlp_norm = get_norm_layer(config)
        self.mlp = get_mlp_layer(config, layer_id=layer_id)

    def _init_weights(self, reset_params: bool = False):
        super()._init_weights(reset_params)
        if reset_params:
            self.attn_norm.reset_parameters()
            self.mlp_norm.reset_parameters()

    def forward(
        self,
        hidden_states: torch.Tensor,
        cu_seqlens: torch.Tensor,
        max_seqlen: int,
        indices: Optional[torch.Tensor] = None,
        attn_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        """Forward pass for a BERT layer, including both attention and MLP.

        Args:
            hidden_states: (total_nnz, dim)
            cu_seqlens: (batch + 1,)
            max_seqlen: int
            indices: None or (total_nnz,)
            attn_mask: None or (batch, max_seqlen)
        """
        attn_out = hidden_states + self.attn(self.attn_norm(hidden_states), cu_seqlens, max_seqlen, indices, attn_mask)
        return attn_out + self.mlp(self.mlp_norm(attn_out))


class FlexBertUnpadParallelPreNormLayer(FlexBertLayerBase):
    """Composes the FlexBERT parallel attention and MLP blocks into a single layer using pre-normalization."""

    def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
        super().__init__(config=config, layer_id=layer_id)
        self.attn_size = config.hidden_size * 3
        self.mlp_size = config.intermediate_size * 2
        # Compute QKV and FF outputs at once
        self.Wqkvff = nn.Linear(config.hidden_size, self.attn_size + self.mlp_size, bias=config.attn_qkv_bias)
        if config.skip_first_prenorm and config.embed_norm and layer_id == 0:
            self.norm = nn.Identity()
        else:
            self.norm = get_norm_layer(config)
        self.attn = get_attention_layer(config, layer_id=layer_id)
        self.mlp = get_mlp_layer(config, layer_id=layer_id)

    def _init_weights(self, reset_params: bool = False):
        super()._init_weights(reset_params)
        if reset_params and hasattr(self.norm, "reset_parameters"):
            self.norm.reset_parameters()

        init_weights(
            self.config,
            self.Wqkvff,
            layer_dim=self.config.hidden_size,
            layer_id=None,
            type_of_module=ModuleType.in_module,
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        cu_seqlens: torch.Tensor,
        max_seqlen: int,
        indices: Optional[torch.Tensor] = None,
        attn_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        """Forward pass for a BERT layer, including both attention and MLP.

        Args:
            hidden_states: (total_nnz, dim)
            attn_mask: None or (batch, max_seqlen)
        """
        # Compute QKV and FF outputs at once and split them
        qkv, intermediate_ff = self.Wqkvff(self.norm(hidden_states)).split([self.attn_size, self.mlp_size], dim=1)
        return hidden_states + self.attn(qkv, cu_seqlens, max_seqlen, indices, attn_mask) + self.mlp(intermediate_ff)


class FlexBertPaddedPreNormLayer(FlexBertLayerBase):
    """Composes the FlexBERT attention and MLP blocks into a single layer using pre-normalization."""

    def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
        super().__init__(config=config, layer_id=layer_id)
        if config.skip_first_prenorm and config.embed_norm and layer_id == 0:
            self.attn_norm = nn.Identity()
        else:
            self.attn_norm = get_norm_layer(config)
        self.attn = get_attention_layer(config, layer_id=layer_id)
        self.mlp_norm = get_norm_layer(config)
        self.mlp = get_mlp_layer(config, layer_id=layer_id)

    def _init_weights(self, reset_params: bool = False):
        super()._init_weights(reset_params)
        if reset_params:
            self.attn_norm.reset_parameters()
            self.mlp_norm.reset_parameters()

    def forward(
        self,
        hidden_states: torch.Tensor,
        attn_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        """Forward pass for a BERT layer, including both attention and MLP.

        Args:
            hidden_states: (batch, max_seqlen, dim)
            attn_mask: None or (batch, max_seqlen)
        """
        attn_out = hidden_states + self.attn(self.attn_norm(hidden_states), attn_mask)
        return attn_out + self.mlp(self.mlp_norm(attn_out))


class FlexBertPaddedParallelPreNormLayer(FlexBertLayerBase):
    """Composes the FlexBERT attention and MLP blocks into a single layer using pre-normalization."""

    def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
        super().__init__(config=config, layer_id=layer_id)
        self.attn_size = config.hidden_size * 3
        self.mlp_size = config.intermediate_size * 2
        # Compute QKV and FF outputs at once
        self.Wqkvff = nn.Linear(config.hidden_size, self.attn_size + self.mlp_size, bias=config.attn_qkv_bias)
        if config.skip_first_prenorm and config.embed_norm and layer_id == 0:
            self.norm = nn.Identity()
        else:
            self.norm = get_norm_layer(config)
        self.attn = get_attention_layer(config, layer_id=layer_id)
        self.mlp = get_mlp_layer(config, layer_id=layer_id)

    def _init_weights(self, reset_params: bool = False):
        super()._init_weights(reset_params)
        if reset_params:
            self.norm.reset_parameters()

        init_weights(
            self.config,
            self.Wqkvff,
            layer_dim=self.config.hidden_size,
            layer_id=None,
            type_of_module=ModuleType.in_module,
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        attn_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        """Forward pass for a BERT layer, including both attention and MLP.

        Args:
            hidden_states: (batch, max_seqlen, dim)
            attn_mask: None or (batch, max_seqlen)
        """
        # Compute QKV and FF outputs at once and split them
        qkv, intermediate_ff = self.Wqkvff(self.norm(hidden_states)).split([self.attn_size, self.mlp_size], dim=2)
        return hidden_states + self.attn(qkv, attn_mask) + self.mlp(intermediate_ff)


class FlexBertUnpadPostNormLayer(FlexBertLayerBase):
    """Composes the FlexBERT attention and MLP blocks into a single layer using post-normalization."""

    def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
        super().__init__(config=config, layer_id=layer_id)
        self.attn = get_attention_layer(config, layer_id=layer_id)
        self.attn_norm = get_norm_layer(config)
        self.mlp = get_mlp_layer(config, layer_id=layer_id)
        self.mlp_norm = get_norm_layer(config)

    def _init_weights(self, reset_params: bool = False):
        super()._init_weights(reset_params)
        if reset_params:
            self.attn_norm.reset_parameters()
            self.mlp_norm.reset_parameters()

    def forward(
        self,
        hidden_states: torch.Tensor,
        cu_seqlens: torch.Tensor,
        max_seqlen: int,
        indices: Optional[torch.Tensor] = None,
        attn_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        """Forward pass for a BERT layer, including both attention and MLP.

        Args:
            hidden_states: (total_nnz, dim)
            cu_seqlens: (batch + 1,)
            max_seqlen: int
            indices: None or (total_nnz,)
            attn_mask: None or (batch, max_seqlen)
        """
        attn_out = self.attn_norm(hidden_states + self.attn(hidden_states, cu_seqlens, max_seqlen, indices, attn_mask))
        return self.mlp_norm(attn_out + self.mlp(attn_out))


class FlexBertPaddedPostNormLayer(FlexBertLayerBase):
    """Composes the FlexBERT attention and MLP blocks into a single layer using post-normalization."""

    def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
        super().__init__(config=config, layer_id=layer_id)
        self.attn = get_attention_layer(config, layer_id=layer_id)
        self.attn_norm = get_norm_layer(config)
        self.mlp = get_mlp_layer(config, layer_id=layer_id)
        self.mlp_norm = get_norm_layer(config)

    def _init_weights(self, reset_params: bool = False):
        super()._init_weights(reset_params)
        if reset_params:
            self.mlp_norm.reset_parameters()

    def forward(
        self,
        hidden_states: torch.Tensor,
        attn_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        """Forward pass for a BERT layer, including both attention and MLP.

        Args:
            hidden_states: (batch, max_seqlen, dim)
            attn_mask: None or (batch, max_seqlen)
        """
        attn_out = self.attn_norm(hidden_states + self.attn(hidden_states, attn_mask))
        return self.mlp_norm(attn_out + self.mlp(attn_out))


LAYER2CLS = {
    "unpadded_prenorm": FlexBertUnpadPreNormLayer,
    "unpadded_compile_prenorm": FlexBertCompileUnpadPreNormLayer,
    "unpadded_parallel_prenorm": FlexBertUnpadParallelPreNormLayer,
    "unpadded_postnorm": FlexBertUnpadPostNormLayer,
    "padded_prenorm": FlexBertPaddedPreNormLayer,
    "padded_parallel_prenorm": FlexBertPaddedParallelPreNormLayer,
    "padded_postnorm": FlexBertPaddedPostNormLayer,
}


def get_bert_layer(config: FlexBertConfig, layer_id: Optional[int] = None) -> FlexBertLayerBase:
    try:
        bert_layer = (
            config.initial_bert_layer
            if layer_id < config.num_initial_layers and getattr(config, "initial_bert_layer", None) is not None
            else config.bert_layer
        )
        bert_layer = maybe_add_padding(config, bert_layer)
        if config.compile_model and bert_layer == "unpadded_prenorm":
            bert_layer = "unpadded_compile_prenorm"
        return LAYER2CLS[bert_layer](config, layer_id=layer_id)
    except KeyError:
        if layer_id < config.num_initial_layers and getattr(config, "initial_bert_layer", None) is not None:
            raise ValueError(
                f"Invalid BERT layer type: {config.initial_bert_layer=}, must be one of {LAYER2CLS.keys()}."
                f"{config.padding=} will be automatically prepended to `config.bert_layer` if unspecified."
            )
        else:
            raise ValueError(
                f"Invalid BERT layer type: {config.bert_layer=}, must be one of {LAYER2CLS.keys()}. "
                f"{config.padding=} will be automatically prepended to `config.bert_layer` if unspecified."
            )


class FlexBertEncoderBase(nn.Module):
    """A FlexBERT base class for type hints."""

    layers: nn.ModuleList

    def _init_weights(self, reset_params: bool = False):
        if hasattr(self, "layers"):
            for layer in self.layers:
                layer._init_weights(reset_params=reset_params)

    def reset_parameters(self):
        self._init_weights(reset_params=True)

    def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
        raise NotImplementedError("This is a base class and should not be used directly.")


class FlexBertUnpadEncoder(FlexBertEncoderBase):
    """A stack of BERT layers providing the backbone of FlexBERT.

    This module is modeled after the Hugging Face BERT's :class:`~transformers.model.bert.modeling_bert.BertAlibiEncoder`,
    but with substantial modifications to implement unpadding and ALiBi.

    Compared to the analogous Hugging Face BERT module, this module handles unpadding to reduce unnecessary computation
    at padded tokens, and pre-computes attention biases to implement ALiBi.
    """

    def __init__(self, config: FlexBertConfig):
        super().__init__()
        self.layers = nn.ModuleList([get_bert_layer(config, layer_id=i) for i in range(config.num_hidden_layers)])
        self.num_attention_heads = config.num_attention_heads

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        indices: Optional[torch.Tensor] = None,
        cu_seqlens: Optional[torch.Tensor] = None,
        max_seqlen: Optional[int] = None,
    ) -> torch.Tensor:
        if indices is None and cu_seqlens is None and max_seqlen is None:
            attention_mask_bool = attention_mask.bool()
            batch, seqlen = hidden_states.shape[:2]
            hidden_states, indices, cu_seqlens, max_seqlen = unpad_input(
                hidden_states, attention_mask_bool
            )

            for layer_module in self.layers:
                hidden_states = layer_module(
                    hidden_states,
                    cu_seqlens,
                    max_seqlen,
                    indices,
                    attn_mask=attention_mask,
                )

            return pad_input(hidden_states, indices, batch, seqlen)
        else:
            for layer_module in self.layers:
                hidden_states = layer_module(
                    hidden_states,
                    cu_seqlens,
                    max_seqlen,
                    indices,
                    attn_mask=attention_mask,
                )
            return hidden_states


class FlexBertPaddedEncoder(FlexBertEncoderBase):
    """A stack of BERT layers providing the backbone of FlexBERT.

    This module is modeled after the Hugging Face BERT's :class:`~transformers.model.bert.modeling_bert.BertAlibiEncoder`,
    but with substantial modifications to implement unpadding and ALiBi.

    Compared to the analogous Hugging Face BERT module, this module handles unpadding to reduce unnecessary computation
    at padded tokens, and pre-computes attention biases to implement ALiBi.
    """

    def __init__(self, config: FlexBertConfig):
        super().__init__()
        self.layers = nn.ModuleList([get_bert_layer(config, layer_id=i) for i in range(config.num_hidden_layers)])
        self.num_attention_heads = config.num_attention_heads

    def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, **kwargs) -> torch.Tensor:
        for layer_module in self.layers:
            hidden_states = layer_module(hidden_states, attn_mask=attention_mask)

        return hidden_states


ENC2CLS = {
    "unpadded_base": FlexBertUnpadEncoder,
    "padded_base": FlexBertPaddedEncoder,
}


def get_encoder_layer(config: FlexBertConfig) -> FlexBertEncoderBase:
    try:
        return ENC2CLS[maybe_add_padding(config, config.encoder_layer)](config)
    except KeyError:
        raise ValueError(
            f"Invalid encoder layer type: {config.encoder_layer=}, must be one of {ENC2CLS.keys()}. "
            f"{config.padding=} will be automatically prepended to `config.encoder_layer` if unspecified."
        )