|
--- |
|
base_model: |
|
- deepseek-ai/deepseek-coder-6.7b-instruct |
|
- m-a-p/OpenCodeInterpreter-DS-6.7B |
|
- deepseek-ai/deepseek-coder-6.7b-base |
|
library_name: transformers |
|
tags: |
|
- mergekit |
|
- merge |
|
|
|
--- |
|
# output-model-directory |
|
|
|
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). |
|
|
|
## Merge Details |
|
### Merge Method |
|
|
|
This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [deepseek-ai/deepseek-coder-6.7b-base](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base) as a base. |
|
|
|
### Models Merged |
|
|
|
The following models were included in the merge: |
|
* [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) |
|
* [m-a-p/OpenCodeInterpreter-DS-6.7B](https://huggingface.co/m-a-p/OpenCodeInterpreter-DS-6.7B) |
|
|
|
### Configuration |
|
|
|
The following YAML configuration was used to produce this model: |
|
|
|
```yaml |
|
models: |
|
- model: deepseek-ai/deepseek-coder-6.7b-instruct |
|
parameters: |
|
density: [1, 0.7, 0.1] # density gradient |
|
weight: 1.0 |
|
- model: m-a-p/OpenCodeInterpreter-DS-6.7B |
|
parameters: |
|
density: 0.5 |
|
weight: [0, 0.3, 0.7, 1] # weight gradient |
|
merge_method: ties |
|
base_model: deepseek-ai/deepseek-coder-6.7b-base |
|
parameters: |
|
normalize: true |
|
int8_mask: true |
|
dtype: float16 |
|
|
|
``` |
|
|
|
### How to Use |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
tokenizer = AutoTokenizer.from_pretrained("m-a-p/OpenCodeInterpreter-DS-6.7B") |
|
model = AutoModelForCausalLM.from_pretrained("ori-cloud/ds-trinity-7b-v1", torch_dtype=torch.bfloat16, |
|
device_map="auto") |
|
prompt = "#write a quick sort algorithm" |
|
inputs = tokenizer.apply_chat_template( |
|
[{'role': 'user', 'content': prompt }], |
|
return_tensors="pt" |
|
).to(model.device) |
|
outputs = model.generate( |
|
inputs, |
|
max_new_tokens=1024, |
|
do_sample=False, |
|
pad_token_id=tokenizer.eos_token_id, |
|
eos_token_id=tokenizer.eos_token_id, |
|
) |
|
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)) |
|
|
|
``` |