Token Classification
Transformers
Safetensors
distilbert
Inference Endpoints
File size: 26,497 Bytes
5a9b5b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
{
  "best_metric": null,
  "best_model_checkpoint": null,
  "epoch": 1.704444837967062,
  "eval_steps": 1000,
  "global_step": 38500,
  "is_hyper_param_search": false,
  "is_local_process_zero": true,
  "is_world_process_zero": true,
  "log_history": [
    {
      "epoch": 0.04,
      "grad_norm": 11.598106384277344,
      "learning_rate": 1.9873510587163855e-05,
      "loss": 0.7232,
      "step": 1000
    },
    {
      "epoch": 0.04,
      "eval_LOC_f1": 0.6290546246963268,
      "eval_ORG_f1": 0.5215345154455224,
      "eval_PER_f1": 0.6879167213048609,
      "eval_loss": 0.5066247582435608,
      "eval_overall_accuracy": 0.8370397334429099,
      "eval_overall_f1": 0.6156872111156381,
      "eval_overall_precision": 0.6129916634028982,
      "eval_overall_recall": 0.6184065701464736,
      "eval_runtime": 273.4377,
      "eval_samples_per_second": 240.274,
      "eval_steps_per_second": 1.88,
      "step": 1000
    },
    {
      "epoch": 0.09,
      "grad_norm": 10.799552917480469,
      "learning_rate": 1.974702117432771e-05,
      "loss": 0.5027,
      "step": 2000
    },
    {
      "epoch": 0.09,
      "eval_LOC_f1": 0.7183374430474798,
      "eval_ORG_f1": 0.5772430933256492,
      "eval_PER_f1": 0.7319963163818684,
      "eval_loss": 0.4309352934360504,
      "eval_overall_accuracy": 0.8618575027245279,
      "eval_overall_f1": 0.6810770980734424,
      "eval_overall_precision": 0.6907076628408085,
      "eval_overall_recall": 0.6717113989783535,
      "eval_runtime": 510.4367,
      "eval_samples_per_second": 128.713,
      "eval_steps_per_second": 1.007,
      "step": 2000
    },
    {
      "epoch": 0.13,
      "grad_norm": 6.027167797088623,
      "learning_rate": 1.9620531761491565e-05,
      "loss": 0.4459,
      "step": 3000
    },
    {
      "epoch": 0.13,
      "eval_LOC_f1": 0.725799810401126,
      "eval_ORG_f1": 0.6044215496887744,
      "eval_PER_f1": 0.7564098621149212,
      "eval_loss": 0.40737923979759216,
      "eval_overall_accuracy": 0.867908783401521,
      "eval_overall_f1": 0.7006346252072851,
      "eval_overall_precision": 0.6948635032545487,
      "eval_overall_recall": 0.706502413004826,
      "eval_runtime": 385.809,
      "eval_samples_per_second": 170.292,
      "eval_steps_per_second": 1.332,
      "step": 3000
    },
    {
      "epoch": 0.18,
      "grad_norm": 3.919013023376465,
      "learning_rate": 1.949404234865542e-05,
      "loss": 0.4238,
      "step": 4000
    },
    {
      "epoch": 0.18,
      "eval_LOC_f1": 0.7514409560614181,
      "eval_ORG_f1": 0.6140201882946715,
      "eval_PER_f1": 0.7751705876362154,
      "eval_loss": 0.3706400394439697,
      "eval_overall_accuracy": 0.8801371494589654,
      "eval_overall_f1": 0.7200897664191354,
      "eval_overall_precision": 0.711405652907357,
      "eval_overall_recall": 0.7289885135325826,
      "eval_runtime": 364.1549,
      "eval_samples_per_second": 180.418,
      "eval_steps_per_second": 1.411,
      "step": 4000
    },
    {
      "epoch": 0.22,
      "grad_norm": 1.984628677368164,
      "learning_rate": 1.9367552935819272e-05,
      "loss": 0.3889,
      "step": 5000
    },
    {
      "epoch": 0.22,
      "eval_LOC_f1": 0.747598650693943,
      "eval_ORG_f1": 0.6493777882131956,
      "eval_PER_f1": 0.7714610460826736,
      "eval_loss": 0.3741539716720581,
      "eval_overall_accuracy": 0.8788552814154443,
      "eval_overall_f1": 0.7267549997033853,
      "eval_overall_precision": 0.7189698622570512,
      "eval_overall_recall": 0.7347105805322722,
      "eval_runtime": 381.1257,
      "eval_samples_per_second": 172.384,
      "eval_steps_per_second": 1.349,
      "step": 5000
    },
    {
      "epoch": 0.27,
      "grad_norm": 9.616731643676758,
      "learning_rate": 1.924106352298313e-05,
      "loss": 0.3741,
      "step": 6000
    },
    {
      "epoch": 0.27,
      "eval_LOC_f1": 0.7834622535184133,
      "eval_ORG_f1": 0.6557229099335325,
      "eval_PER_f1": 0.7861336370240923,
      "eval_loss": 0.34435510635375977,
      "eval_overall_accuracy": 0.8897586038506661,
      "eval_overall_f1": 0.7479976639412649,
      "eval_overall_precision": 0.7372337801167668,
      "eval_overall_recall": 0.7590805181610363,
      "eval_runtime": 322.2713,
      "eval_samples_per_second": 203.866,
      "eval_steps_per_second": 1.595,
      "step": 6000
    },
    {
      "epoch": 0.31,
      "grad_norm": 23.724206924438477,
      "learning_rate": 1.9114574110146982e-05,
      "loss": 0.3565,
      "step": 7000
    },
    {
      "epoch": 0.31,
      "eval_LOC_f1": 0.7660811273670305,
      "eval_ORG_f1": 0.6701080291970803,
      "eval_PER_f1": 0.8082118790158281,
      "eval_loss": 0.3384684920310974,
      "eval_overall_accuracy": 0.893588575444113,
      "eval_overall_f1": 0.7513199894189224,
      "eval_overall_precision": 0.7511583787634086,
      "eval_overall_recall": 0.751481669630006,
      "eval_runtime": 380.8076,
      "eval_samples_per_second": 172.528,
      "eval_steps_per_second": 1.35,
      "step": 7000
    },
    {
      "epoch": 0.35,
      "grad_norm": 12.36683177947998,
      "learning_rate": 1.8988084697310836e-05,
      "loss": 0.3438,
      "step": 8000
    },
    {
      "epoch": 0.35,
      "eval_LOC_f1": 0.7931912766836788,
      "eval_ORG_f1": 0.6588008889092534,
      "eval_PER_f1": 0.801709206691627,
      "eval_loss": 0.33696234226226807,
      "eval_overall_accuracy": 0.8917491469101174,
      "eval_overall_f1": 0.7552752293577981,
      "eval_overall_precision": 0.7441655025063686,
      "eval_overall_recall": 0.7667217001100669,
      "eval_runtime": 319.19,
      "eval_samples_per_second": 205.834,
      "eval_steps_per_second": 1.61,
      "step": 8000
    },
    {
      "epoch": 0.4,
      "grad_norm": 11.394143104553223,
      "learning_rate": 1.8861595284474693e-05,
      "loss": 0.3371,
      "step": 9000
    },
    {
      "epoch": 0.4,
      "eval_LOC_f1": 0.7949055775142732,
      "eval_ORG_f1": 0.69052384904555,
      "eval_PER_f1": 0.8017390414812541,
      "eval_loss": 0.3417092263698578,
      "eval_overall_accuracy": 0.8959111238156492,
      "eval_overall_f1": 0.7671861870625006,
      "eval_overall_precision": 0.7645921077527909,
      "eval_overall_recall": 0.7697979284847458,
      "eval_runtime": 381.3721,
      "eval_samples_per_second": 172.273,
      "eval_steps_per_second": 1.348,
      "step": 9000
    },
    {
      "epoch": 0.44,
      "grad_norm": 3.7753918170928955,
      "learning_rate": 1.8735105871638546e-05,
      "loss": 0.3352,
      "step": 10000
    },
    {
      "epoch": 0.44,
      "eval_LOC_f1": 0.797682178676422,
      "eval_ORG_f1": 0.6847098624696625,
      "eval_PER_f1": 0.8165334907549915,
      "eval_loss": 0.30863526463508606,
      "eval_overall_accuracy": 0.8984957032855126,
      "eval_overall_f1": 0.7713626684335284,
      "eval_overall_precision": 0.7747418167842222,
      "eval_overall_recall": 0.7680128693590721,
      "eval_runtime": 353.766,
      "eval_samples_per_second": 185.716,
      "eval_steps_per_second": 1.453,
      "step": 10000
    },
    {
      "epoch": 0.49,
      "grad_norm": 4.4588704109191895,
      "learning_rate": 1.86086164588024e-05,
      "loss": 0.3294,
      "step": 11000
    },
    {
      "epoch": 0.49,
      "eval_LOC_f1": 0.8038860433458362,
      "eval_ORG_f1": 0.6876538381909779,
      "eval_PER_f1": 0.8135372012007188,
      "eval_loss": 0.3306277096271515,
      "eval_overall_accuracy": 0.8961009474806305,
      "eval_overall_f1": 0.7722079415779226,
      "eval_overall_precision": 0.7585587302451574,
      "eval_overall_recall": 0.7863573504924788,
      "eval_runtime": 386.1174,
      "eval_samples_per_second": 170.155,
      "eval_steps_per_second": 1.331,
      "step": 11000
    },
    {
      "epoch": 0.53,
      "grad_norm": 0.8787571787834167,
      "learning_rate": 1.8482127045966253e-05,
      "loss": 0.3164,
      "step": 12000
    },
    {
      "epoch": 0.53,
      "eval_LOC_f1": 0.7928661730178796,
      "eval_ORG_f1": 0.6923009590976729,
      "eval_PER_f1": 0.8189351776068096,
      "eval_loss": 0.32749465107917786,
      "eval_overall_accuracy": 0.8991314264615677,
      "eval_overall_f1": 0.7738191399005043,
      "eval_overall_precision": 0.7606578382394035,
      "eval_overall_recall": 0.7874439082211497,
      "eval_runtime": 369.9388,
      "eval_samples_per_second": 177.597,
      "eval_steps_per_second": 1.389,
      "step": 12000
    },
    {
      "epoch": 0.58,
      "grad_norm": 7.5162811279296875,
      "learning_rate": 1.8355637633130106e-05,
      "loss": 0.3248,
      "step": 13000
    },
    {
      "epoch": 0.58,
      "eval_LOC_f1": 0.8073569920769398,
      "eval_ORG_f1": 0.6888664253138371,
      "eval_PER_f1": 0.813194105996661,
      "eval_loss": 0.31697988510131836,
      "eval_overall_accuracy": 0.9009842543130915,
      "eval_overall_f1": 0.7742117470068326,
      "eval_overall_precision": 0.7643891570738953,
      "eval_overall_recall": 0.7842900685801372,
      "eval_runtime": 387.7862,
      "eval_samples_per_second": 169.423,
      "eval_steps_per_second": 1.325,
      "step": 13000
    },
    {
      "epoch": 0.62,
      "grad_norm": 15.765552520751953,
      "learning_rate": 1.8229148220293963e-05,
      "loss": 0.3031,
      "step": 14000
    },
    {
      "epoch": 0.62,
      "eval_LOC_f1": 0.8060124842017926,
      "eval_ORG_f1": 0.7039925586720092,
      "eval_PER_f1": 0.8251789914844223,
      "eval_loss": 0.3116307258605957,
      "eval_overall_accuracy": 0.9031675986636414,
      "eval_overall_f1": 0.7825302431386867,
      "eval_overall_precision": 0.7787194499951092,
      "eval_overall_recall": 0.7863785172014789,
      "eval_runtime": 393.4395,
      "eval_samples_per_second": 166.989,
      "eval_steps_per_second": 1.306,
      "step": 14000
    },
    {
      "epoch": 0.66,
      "grad_norm": 7.4173808097839355,
      "learning_rate": 1.8102658807457817e-05,
      "loss": 0.3215,
      "step": 15000
    },
    {
      "epoch": 0.66,
      "eval_LOC_f1": 0.8202011293152209,
      "eval_ORG_f1": 0.7058145261059131,
      "eval_PER_f1": 0.831773061514806,
      "eval_loss": 0.2920757532119751,
      "eval_overall_accuracy": 0.9057320791572127,
      "eval_overall_f1": 0.7904764259051951,
      "eval_overall_precision": 0.791295187324571,
      "eval_overall_recall": 0.7896593570964919,
      "eval_runtime": 358.5756,
      "eval_samples_per_second": 183.225,
      "eval_steps_per_second": 1.433,
      "step": 15000
    },
    {
      "epoch": 0.71,
      "grad_norm": 2.693660259246826,
      "learning_rate": 1.7976169394621674e-05,
      "loss": 0.3004,
      "step": 16000
    },
    {
      "epoch": 0.71,
      "eval_LOC_f1": 0.820160121404321,
      "eval_ORG_f1": 0.7145462460731136,
      "eval_PER_f1": 0.8352356233778416,
      "eval_loss": 0.2958711087703705,
      "eval_overall_accuracy": 0.9059717780596597,
      "eval_overall_f1": 0.793620583311305,
      "eval_overall_precision": 0.7928911988619157,
      "eval_overall_recall": 0.7943513109248441,
      "eval_runtime": 381.2154,
      "eval_samples_per_second": 172.343,
      "eval_steps_per_second": 1.348,
      "step": 16000
    },
    {
      "epoch": 0.75,
      "grad_norm": 3.5598666667938232,
      "learning_rate": 1.7849679981785527e-05,
      "loss": 0.2963,
      "step": 17000
    },
    {
      "epoch": 0.75,
      "eval_LOC_f1": 0.8227697858804539,
      "eval_ORG_f1": 0.7160294907475222,
      "eval_PER_f1": 0.8368475991649269,
      "eval_loss": 0.2975331246852875,
      "eval_overall_accuracy": 0.9079280784187614,
      "eval_overall_f1": 0.7966393323888228,
      "eval_overall_precision": 0.7978373328992902,
      "eval_overall_recall": 0.7954449242231818,
      "eval_runtime": 335.9278,
      "eval_samples_per_second": 195.578,
      "eval_steps_per_second": 1.53,
      "step": 17000
    },
    {
      "epoch": 0.8,
      "grad_norm": 4.444880485534668,
      "learning_rate": 1.772319056894938e-05,
      "loss": 0.3037,
      "step": 18000
    },
    {
      "epoch": 0.8,
      "eval_LOC_f1": 0.8179091806697487,
      "eval_ORG_f1": 0.7172501033887172,
      "eval_PER_f1": 0.8379966394973857,
      "eval_loss": 0.29457131028175354,
      "eval_overall_accuracy": 0.9080412282112209,
      "eval_overall_f1": 0.7957346666573557,
      "eval_overall_precision": 0.7876546623349693,
      "eval_overall_recall": 0.8039821635198826,
      "eval_runtime": 382.8523,
      "eval_samples_per_second": 171.607,
      "eval_steps_per_second": 1.343,
      "step": 18000
    },
    {
      "epoch": 0.84,
      "grad_norm": 3.651078701019287,
      "learning_rate": 1.7596701156113234e-05,
      "loss": 0.2893,
      "step": 19000
    },
    {
      "epoch": 0.84,
      "eval_LOC_f1": 0.8096252541880508,
      "eval_ORG_f1": 0.722521212121212,
      "eval_PER_f1": 0.8371796558038832,
      "eval_loss": 0.30927255749702454,
      "eval_overall_accuracy": 0.90601644245142,
      "eval_overall_f1": 0.7939453776936077,
      "eval_overall_precision": 0.7907640837923529,
      "eval_overall_recall": 0.797152372082522,
      "eval_runtime": 321.3057,
      "eval_samples_per_second": 204.478,
      "eval_steps_per_second": 1.6,
      "step": 19000
    },
    {
      "epoch": 0.89,
      "grad_norm": 7.439753532409668,
      "learning_rate": 1.747021174327709e-05,
      "loss": 0.2948,
      "step": 20000
    },
    {
      "epoch": 0.89,
      "eval_LOC_f1": 0.82627274528115,
      "eval_ORG_f1": 0.714928600160901,
      "eval_PER_f1": 0.8321251892983341,
      "eval_loss": 0.2865753769874573,
      "eval_overall_accuracy": 0.9090692536282374,
      "eval_overall_f1": 0.7971877602217748,
      "eval_overall_precision": 0.7939824049383752,
      "eval_overall_recall": 0.8004191008382017,
      "eval_runtime": 380.5435,
      "eval_samples_per_second": 172.648,
      "eval_steps_per_second": 1.351,
      "step": 20000
    },
    {
      "epoch": 0.93,
      "grad_norm": 23.34659767150879,
      "learning_rate": 1.7343722330440944e-05,
      "loss": 0.2868,
      "step": 21000
    },
    {
      "epoch": 0.93,
      "eval_LOC_f1": 0.8167083361060147,
      "eval_ORG_f1": 0.727712241345968,
      "eval_PER_f1": 0.840251831974404,
      "eval_loss": 0.29932352900505066,
      "eval_overall_accuracy": 0.9084059874105967,
      "eval_overall_f1": 0.798865244242835,
      "eval_overall_precision": 0.7950827119165264,
      "eval_overall_recall": 0.8026839387012107,
      "eval_runtime": 351.3256,
      "eval_samples_per_second": 187.006,
      "eval_steps_per_second": 1.463,
      "step": 21000
    },
    {
      "epoch": 0.97,
      "grad_norm": 10.305853843688965,
      "learning_rate": 1.7217232917604798e-05,
      "loss": 0.2977,
      "step": 22000
    },
    {
      "epoch": 0.97,
      "eval_LOC_f1": 0.8263365865270175,
      "eval_ORG_f1": 0.7257252830008247,
      "eval_PER_f1": 0.8407604251839738,
      "eval_loss": 0.2778206169605255,
      "eval_overall_accuracy": 0.9105640219391492,
      "eval_overall_f1": 0.8018860680855222,
      "eval_overall_precision": 0.7934180537329926,
      "eval_overall_recall": 0.8105367877402422,
      "eval_runtime": 394.5686,
      "eval_samples_per_second": 166.511,
      "eval_steps_per_second": 1.303,
      "step": 22000
    },
    {
      "epoch": 1.02,
      "grad_norm": 11.687705993652344,
      "learning_rate": 1.709074350476865e-05,
      "loss": 0.2585,
      "step": 23000
    },
    {
      "epoch": 1.02,
      "eval_LOC_f1": 0.8267493620904808,
      "eval_ORG_f1": 0.7272141627126203,
      "eval_PER_f1": 0.8396679597210218,
      "eval_loss": 0.2966572642326355,
      "eval_overall_accuracy": 0.9093171410025072,
      "eval_overall_f1": 0.8032836474772869,
      "eval_overall_precision": 0.7918766066838047,
      "eval_overall_recall": 0.8150241300482601,
      "eval_runtime": 380.5595,
      "eval_samples_per_second": 172.641,
      "eval_steps_per_second": 1.351,
      "step": 23000
    },
    {
      "epoch": 1.06,
      "grad_norm": 3.907621383666992,
      "learning_rate": 1.6964254091932504e-05,
      "loss": 0.2362,
      "step": 24000
    },
    {
      "epoch": 1.06,
      "eval_LOC_f1": 0.8330133267755635,
      "eval_ORG_f1": 0.7180792210666076,
      "eval_PER_f1": 0.830729295671386,
      "eval_loss": 0.3153696358203888,
      "eval_overall_accuracy": 0.9078134398132433,
      "eval_overall_f1": 0.7997513906153431,
      "eval_overall_precision": 0.7873453202980789,
      "eval_overall_recall": 0.8125546806649169,
      "eval_runtime": 373.8915,
      "eval_samples_per_second": 175.719,
      "eval_steps_per_second": 1.375,
      "step": 24000
    },
    {
      "epoch": 1.11,
      "grad_norm": 8.853696823120117,
      "learning_rate": 1.683776467909636e-05,
      "loss": 0.2223,
      "step": 25000
    },
    {
      "epoch": 1.11,
      "eval_LOC_f1": 0.827347355217957,
      "eval_ORG_f1": 0.7285489531647101,
      "eval_PER_f1": 0.8452979544031824,
      "eval_loss": 0.29239869117736816,
      "eval_overall_accuracy": 0.9101635312263651,
      "eval_overall_f1": 0.8052130812290949,
      "eval_overall_precision": 0.7913853365400993,
      "eval_overall_recall": 0.8195326390652782,
      "eval_runtime": 381.4229,
      "eval_samples_per_second": 172.25,
      "eval_steps_per_second": 1.348,
      "step": 25000
    },
    {
      "epoch": 1.15,
      "grad_norm": 0.670585572719574,
      "learning_rate": 1.6711275266260215e-05,
      "loss": 0.2339,
      "step": 26000
    },
    {
      "epoch": 1.15,
      "eval_LOC_f1": 0.835739538961472,
      "eval_ORG_f1": 0.7377061141106085,
      "eval_PER_f1": 0.8477990752245738,
      "eval_loss": 0.2966776490211487,
      "eval_overall_accuracy": 0.9133503355784635,
      "eval_overall_f1": 0.8116372709464219,
      "eval_overall_precision": 0.8062829412297131,
      "eval_overall_recall": 0.8170631896819349,
      "eval_runtime": 348.6318,
      "eval_samples_per_second": 188.451,
      "eval_steps_per_second": 1.474,
      "step": 26000
    },
    {
      "epoch": 1.2,
      "grad_norm": 5.636080741882324,
      "learning_rate": 1.658478585342407e-05,
      "loss": 0.2318,
      "step": 27000
    },
    {
      "epoch": 1.2,
      "eval_LOC_f1": 0.8379575082665046,
      "eval_ORG_f1": 0.741773869167331,
      "eval_PER_f1": 0.8468086407796683,
      "eval_loss": 0.297035276889801,
      "eval_overall_accuracy": 0.9143232749123089,
      "eval_overall_f1": 0.8128532056457225,
      "eval_overall_precision": 0.8019583070120025,
      "eval_overall_recall": 0.8240482036519629,
      "eval_runtime": 381.0554,
      "eval_samples_per_second": 172.416,
      "eval_steps_per_second": 1.349,
      "step": 27000
    },
    {
      "epoch": 1.24,
      "grad_norm": 11.75963306427002,
      "learning_rate": 1.6458296440587925e-05,
      "loss": 0.2261,
      "step": 28000
    },
    {
      "epoch": 1.24,
      "eval_LOC_f1": 0.8355374639087424,
      "eval_ORG_f1": 0.7354031739753795,
      "eval_PER_f1": 0.8533292168364721,
      "eval_loss": 0.28783518075942993,
      "eval_overall_accuracy": 0.914816072034731,
      "eval_overall_f1": 0.813075185134273,
      "eval_overall_precision": 0.8123622174798036,
      "eval_overall_recall": 0.8137894053565885,
      "eval_runtime": 319.3665,
      "eval_samples_per_second": 205.72,
      "eval_steps_per_second": 1.609,
      "step": 28000
    },
    {
      "epoch": 1.28,
      "grad_norm": 0.3197329342365265,
      "learning_rate": 1.633180702775178e-05,
      "loss": 0.2209,
      "step": 29000
    },
    {
      "epoch": 1.28,
      "eval_LOC_f1": 0.8348409410512713,
      "eval_ORG_f1": 0.7400960885063363,
      "eval_PER_f1": 0.852092035253628,
      "eval_loss": 0.28716719150543213,
      "eval_overall_accuracy": 0.9143351854167783,
      "eval_overall_f1": 0.8130391159543484,
      "eval_overall_precision": 0.8030238383615944,
      "eval_overall_recall": 0.8233073688369599,
      "eval_runtime": 381.0776,
      "eval_samples_per_second": 172.406,
      "eval_steps_per_second": 1.349,
      "step": 29000
    },
    {
      "epoch": 1.33,
      "grad_norm": 2.500840663909912,
      "learning_rate": 1.6205317614915632e-05,
      "loss": 0.2326,
      "step": 30000
    },
    {
      "epoch": 1.33,
      "eval_LOC_f1": 0.835323589241317,
      "eval_ORG_f1": 0.7427079308204821,
      "eval_PER_f1": 0.8500763485649586,
      "eval_loss": 0.28030699491500854,
      "eval_overall_accuracy": 0.914723765625093,
      "eval_overall_f1": 0.8127800899066888,
      "eval_overall_precision": 0.8005707559436636,
      "eval_overall_recall": 0.8253675951796348,
      "eval_runtime": 325.8915,
      "eval_samples_per_second": 201.601,
      "eval_steps_per_second": 1.577,
      "step": 30000
    },
    {
      "epoch": 1.37,
      "grad_norm": 0.524834156036377,
      "learning_rate": 1.607882820207949e-05,
      "loss": 0.2198,
      "step": 31000
    },
    {
      "epoch": 1.37,
      "eval_LOC_f1": 0.8371461143834315,
      "eval_ORG_f1": 0.7432512590283674,
      "eval_PER_f1": 0.8540951115999625,
      "eval_loss": 0.28697240352630615,
      "eval_overall_accuracy": 0.9156036541427712,
      "eval_overall_f1": 0.8147560933208163,
      "eval_overall_precision": 0.8031779980531677,
      "eval_overall_recall": 0.8266728755679733,
      "eval_runtime": 381.127,
      "eval_samples_per_second": 172.383,
      "eval_steps_per_second": 1.349,
      "step": 31000
    },
    {
      "epoch": 1.42,
      "grad_norm": 18.899179458618164,
      "learning_rate": 1.5952338789243342e-05,
      "loss": 0.221,
      "step": 32000
    },
    {
      "epoch": 1.42,
      "eval_LOC_f1": 0.8441860465116279,
      "eval_ORG_f1": 0.7411915135442319,
      "eval_PER_f1": 0.8485990299434801,
      "eval_loss": 0.28265270590782166,
      "eval_overall_accuracy": 0.9150192950172404,
      "eval_overall_f1": 0.8153681889236267,
      "eval_overall_precision": 0.8065649592710203,
      "eval_overall_recall": 0.8243657042869641,
      "eval_runtime": 346.0172,
      "eval_samples_per_second": 189.875,
      "eval_steps_per_second": 1.485,
      "step": 32000
    },
    {
      "epoch": 1.46,
      "grad_norm": 9.521773338317871,
      "learning_rate": 1.5825849376407196e-05,
      "loss": 0.2319,
      "step": 33000
    },
    {
      "epoch": 1.46,
      "eval_LOC_f1": 0.8391690707524869,
      "eval_ORG_f1": 0.7463789877336044,
      "eval_PER_f1": 0.8572165373824064,
      "eval_loss": 0.27687233686447144,
      "eval_overall_accuracy": 0.9169562408065793,
      "eval_overall_f1": 0.8172862291713824,
      "eval_overall_precision": 0.8068870201398582,
      "eval_overall_recall": 0.8279569892473119,
      "eval_runtime": 385.1918,
      "eval_samples_per_second": 170.564,
      "eval_steps_per_second": 1.334,
      "step": 33000
    },
    {
      "epoch": 1.51,
      "grad_norm": 4.6437883377075195,
      "learning_rate": 1.569935996357105e-05,
      "loss": 0.2284,
      "step": 34000
    },
    {
      "epoch": 1.51,
      "eval_LOC_f1": 0.8413632604389053,
      "eval_ORG_f1": 0.7468433377658009,
      "eval_PER_f1": 0.8579245204510465,
      "eval_loss": 0.2682867646217346,
      "eval_overall_accuracy": 0.918707829370113,
      "eval_overall_f1": 0.8187739611430496,
      "eval_overall_precision": 0.8141108359780979,
      "eval_overall_recall": 0.823490813648294,
      "eval_runtime": 389.0432,
      "eval_samples_per_second": 168.876,
      "eval_steps_per_second": 1.321,
      "step": 34000
    },
    {
      "epoch": 1.55,
      "grad_norm": 8.055586814880371,
      "learning_rate": 1.5572870550734906e-05,
      "loss": 0.222,
      "step": 35000
    },
    {
      "epoch": 1.55,
      "eval_LOC_f1": 0.8416752574836452,
      "eval_ORG_f1": 0.7401676189600267,
      "eval_PER_f1": 0.8485277320098252,
      "eval_loss": 0.2882651388645172,
      "eval_overall_accuracy": 0.9156967049589385,
      "eval_overall_f1": 0.8135379092525155,
      "eval_overall_precision": 0.7963817723503612,
      "eval_overall_recall": 0.8314494962323258,
      "eval_runtime": 364.9994,
      "eval_samples_per_second": 180.0,
      "eval_steps_per_second": 1.408,
      "step": 35000
    },
    {
      "epoch": 1.59,
      "grad_norm": 2.8561666011810303,
      "learning_rate": 1.544638113789876e-05,
      "loss": 0.2272,
      "step": 36000
    },
    {
      "epoch": 1.59,
      "eval_LOC_f1": 0.843695144769584,
      "eval_ORG_f1": 0.7492301387506587,
      "eval_PER_f1": 0.8506844052649669,
      "eval_loss": 0.2805135250091553,
      "eval_overall_accuracy": 0.9165698938178527,
      "eval_overall_f1": 0.8180830193920244,
      "eval_overall_precision": 0.805384452359629,
      "eval_overall_recall": 0.8311884401546581,
      "eval_runtime": 381.2063,
      "eval_samples_per_second": 172.348,
      "eval_steps_per_second": 1.348,
      "step": 36000
    },
    {
      "epoch": 1.64,
      "grad_norm": 3.3037211894989014,
      "learning_rate": 1.5319891725062616e-05,
      "loss": 0.2086,
      "step": 37000
    },
    {
      "epoch": 1.64,
      "eval_LOC_f1": 0.8383752402995496,
      "eval_ORG_f1": 0.7563655598566996,
      "eval_PER_f1": 0.8609615664428694,
      "eval_loss": 0.2780158519744873,
      "eval_overall_accuracy": 0.9186519988804126,
      "eval_overall_f1": 0.822004740154319,
      "eval_overall_precision": 0.8205800667955704,
      "eval_overall_recall": 0.8234343690909603,
      "eval_runtime": 332.7363,
      "eval_samples_per_second": 197.454,
      "eval_steps_per_second": 1.545,
      "step": 37000
    },
    {
      "epoch": 1.68,
      "grad_norm": 3.0146262645721436,
      "learning_rate": 1.5193402312226468e-05,
      "loss": 0.2283,
      "step": 38000
    },
    {
      "epoch": 1.68,
      "eval_LOC_f1": 0.8468252837536212,
      "eval_ORG_f1": 0.7509236309217602,
      "eval_PER_f1": 0.8619782260977246,
      "eval_loss": 0.27215901017189026,
      "eval_overall_accuracy": 0.9187383500378159,
      "eval_overall_f1": 0.8234198288625827,
      "eval_overall_precision": 0.8114117405301733,
      "eval_overall_recall": 0.8357886715773432,
      "eval_runtime": 305.4831,
      "eval_samples_per_second": 215.069,
      "eval_steps_per_second": 1.683,
      "step": 38000
    }
  ],
  "logging_steps": 1000,
  "max_steps": 158116,
  "num_input_tokens_seen": 0,
  "num_train_epochs": 7,
  "save_steps": 500,
  "total_flos": 5313197707682040.0,
  "train_batch_size": 8,
  "trial_name": null,
  "trial_params": null
}