File size: 7,385 Bytes
f1e6b80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import functools
from importlib import util
from typing import Any, List, Optional, Tuple, Union

from langchain_core._api import beta
from langchain_core.embeddings import Embeddings
from langchain_core.runnables import Runnable

_SUPPORTED_PROVIDERS = {
    "azure_openai": "langchain_openai",
    "bedrock": "langchain_aws",
    "cohere": "langchain_cohere",
    "google_vertexai": "langchain_google_vertexai",
    "huggingface": "langchain_huggingface",
    "mistralai": "langchain_mistralai",
    "openai": "langchain_openai",
}


def _get_provider_list() -> str:
    """Get formatted list of providers and their packages."""
    return "\n".join(
        f"  - {p}: {pkg.replace('_', '-')}" for p, pkg in _SUPPORTED_PROVIDERS.items()
    )


def _parse_model_string(model_name: str) -> Tuple[str, str]:
    """Parse a model string into provider and model name components.

    The model string should be in the format 'provider:model-name', where provider
    is one of the supported providers.

    Args:
        model_name: A model string in the format 'provider:model-name'

    Returns:
        A tuple of (provider, model_name)

    .. code-block:: python

        _parse_model_string("openai:text-embedding-3-small")
        # Returns: ("openai", "text-embedding-3-small")

        _parse_model_string("bedrock:amazon.titan-embed-text-v1")
        # Returns: ("bedrock", "amazon.titan-embed-text-v1")

    Raises:
        ValueError: If the model string is not in the correct format or
            the provider is unsupported
    """
    if ":" not in model_name:
        providers = _SUPPORTED_PROVIDERS
        raise ValueError(
            f"Invalid model format '{model_name}'.\n"
            f"Model name must be in format 'provider:model-name'\n"
            f"Example valid model strings:\n"
            f"  - openai:text-embedding-3-small\n"
            f"  - bedrock:amazon.titan-embed-text-v1\n"
            f"  - cohere:embed-english-v3.0\n"
            f"Supported providers: {providers}"
        )

    provider, model = model_name.split(":", 1)
    provider = provider.lower().strip()
    model = model.strip()

    if provider not in _SUPPORTED_PROVIDERS:
        raise ValueError(
            f"Provider '{provider}' is not supported.\n"
            f"Supported providers and their required packages:\n"
            f"{_get_provider_list()}"
        )
    if not model:
        raise ValueError("Model name cannot be empty")
    return provider, model


def _infer_model_and_provider(
    model: str, *, provider: Optional[str] = None
) -> Tuple[str, str]:
    if not model.strip():
        raise ValueError("Model name cannot be empty")
    if provider is None and ":" in model:
        provider, model_name = _parse_model_string(model)
    else:
        provider = provider
        model_name = model

    if not provider:
        providers = _SUPPORTED_PROVIDERS
        raise ValueError(
            "Must specify either:\n"
            "1. A model string in format 'provider:model-name'\n"
            "   Example: 'openai:text-embedding-3-small'\n"
            "2. Or explicitly set provider from: "
            f"{providers}"
        )

    if provider not in _SUPPORTED_PROVIDERS:
        raise ValueError(
            f"Provider '{provider}' is not supported.\n"
            f"Supported providers and their required packages:\n"
            f"{_get_provider_list()}"
        )
    return provider, model_name


@functools.lru_cache(maxsize=len(_SUPPORTED_PROVIDERS))
def _check_pkg(pkg: str) -> None:
    """Check if a package is installed."""
    if not util.find_spec(pkg):
        raise ImportError(
            f"Could not import {pkg} python package. "
            f"Please install it with `pip install {pkg}`"
        )


@beta()
def init_embeddings(
    model: str,
    *,
    provider: Optional[str] = None,
    **kwargs: Any,
) -> Union[Embeddings, Runnable[Any, List[float]]]:
    """Initialize an embeddings model from a model name and optional provider.

    **Note:** Must have the integration package corresponding to the model provider
    installed.

    Args:
        model: Name of the model to use. Can be either:
            - A model string like "openai:text-embedding-3-small"
            - Just the model name if provider is specified
        provider: Optional explicit provider name. If not specified,
            will attempt to parse from the model string. Supported providers
            and their required packages:

            {_get_provider_list()}

        **kwargs: Additional model-specific parameters passed to the embedding model.
            These vary by provider, see the provider-specific documentation for details.

    Returns:
        An Embeddings instance that can generate embeddings for text.

    Raises:
        ValueError: If the model provider is not supported or cannot be determined
        ImportError: If the required provider package is not installed

    .. dropdown:: Example Usage
        :open:

        .. code-block:: python

            # Using a model string
            model = init_embeddings("openai:text-embedding-3-small")
            model.embed_query("Hello, world!")

            # Using explicit provider
            model = init_embeddings(
                model="text-embedding-3-small",
                provider="openai"
            )
            model.embed_documents(["Hello, world!", "Goodbye, world!"])

            # With additional parameters
            model = init_embeddings(
                "openai:text-embedding-3-small",
                api_key="sk-..."
            )

    .. versionadded:: 0.3.9
    """
    if not model:
        providers = _SUPPORTED_PROVIDERS.keys()
        raise ValueError(
            "Must specify model name. "
            f"Supported providers are: {', '.join(providers)}"
        )

    provider, model_name = _infer_model_and_provider(model, provider=provider)
    pkg = _SUPPORTED_PROVIDERS[provider]
    _check_pkg(pkg)

    if provider == "openai":
        from langchain_openai import OpenAIEmbeddings

        return OpenAIEmbeddings(model=model_name, **kwargs)
    elif provider == "azure_openai":
        from langchain_openai import AzureOpenAIEmbeddings

        return AzureOpenAIEmbeddings(model=model_name, **kwargs)
    elif provider == "google_vertexai":
        from langchain_google_vertexai import VertexAIEmbeddings

        return VertexAIEmbeddings(model=model_name, **kwargs)
    elif provider == "bedrock":
        from langchain_aws import BedrockEmbeddings

        return BedrockEmbeddings(model_id=model_name, **kwargs)
    elif provider == "cohere":
        from langchain_cohere import CohereEmbeddings

        return CohereEmbeddings(model=model_name, **kwargs)
    elif provider == "mistralai":
        from langchain_mistralai import MistralAIEmbeddings

        return MistralAIEmbeddings(model=model_name, **kwargs)
    elif provider == "huggingface":
        from langchain_huggingface import HuggingFaceEmbeddings

        return HuggingFaceEmbeddings(model_name=model_name, **kwargs)
    else:
        raise ValueError(
            f"Provider '{provider}' is not supported.\n"
            f"Supported providers and their required packages:\n"
            f"{_get_provider_list()}"
        )


__all__ = [
    "init_embeddings",
    "Embeddings",  # This one is for backwards compatibility
]