File size: 32,959 Bytes
f1e6b80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 |
from __future__ import annotations
import warnings
from importlib import util
from typing import (
Any,
AsyncIterator,
Callable,
Dict,
Iterator,
List,
Literal,
Optional,
Sequence,
Tuple,
Type,
Union,
cast,
overload,
)
from langchain_core.language_models import (
BaseChatModel,
LanguageModelInput,
SimpleChatModel,
)
from langchain_core.language_models.chat_models import (
agenerate_from_stream,
generate_from_stream,
)
from langchain_core.messages import AnyMessage, BaseMessage
from langchain_core.runnables import Runnable, RunnableConfig, ensure_config
from langchain_core.runnables.schema import StreamEvent
from langchain_core.tools import BaseTool
from langchain_core.tracers import RunLog, RunLogPatch
from pydantic import BaseModel
from typing_extensions import TypeAlias
__all__ = [
"init_chat_model",
# For backwards compatibility
"BaseChatModel",
"SimpleChatModel",
"generate_from_stream",
"agenerate_from_stream",
]
@overload
def init_chat_model( # type: ignore[overload-overlap]
model: str,
*,
model_provider: Optional[str] = None,
configurable_fields: Literal[None] = None,
config_prefix: Optional[str] = None,
**kwargs: Any,
) -> BaseChatModel: ...
@overload
def init_chat_model(
model: Literal[None] = None,
*,
model_provider: Optional[str] = None,
configurable_fields: Literal[None] = None,
config_prefix: Optional[str] = None,
**kwargs: Any,
) -> _ConfigurableModel: ...
@overload
def init_chat_model(
model: Optional[str] = None,
*,
model_provider: Optional[str] = None,
configurable_fields: Union[Literal["any"], List[str], Tuple[str, ...]] = ...,
config_prefix: Optional[str] = None,
**kwargs: Any,
) -> _ConfigurableModel: ...
# FOR CONTRIBUTORS: If adding support for a new provider, please append the provider
# name to the supported list in the docstring below. Do *not* change the order of the
# existing providers.
def init_chat_model(
model: Optional[str] = None,
*,
model_provider: Optional[str] = None,
configurable_fields: Optional[
Union[Literal["any"], List[str], Tuple[str, ...]]
] = None,
config_prefix: Optional[str] = None,
**kwargs: Any,
) -> Union[BaseChatModel, _ConfigurableModel]:
"""Initialize a ChatModel from the model name and provider.
**Note:** Must have the integration package corresponding to the model provider
installed.
Args:
model: The name of the model, e.g. "gpt-4o", "claude-3-opus-20240229".
model_provider: The model provider. Supported model_provider values and the
corresponding integration package are:
- 'openai' -> langchain-openai
- 'anthropic' -> langchain-anthropic
- 'azure_openai' -> langchain-openai
- 'google_vertexai' -> langchain-google-vertexai
- 'google_genai' -> langchain-google-genai
- 'bedrock' -> langchain-aws
- 'bedrock_converse' -> langchain-aws
- 'cohere' -> langchain-cohere
- 'fireworks' -> langchain-fireworks
- 'together' -> langchain-together
- 'mistralai' -> langchain-mistralai
- 'huggingface' -> langchain-huggingface
- 'groq' -> langchain-groq
- 'ollama' -> langchain-ollama
- 'google_anthropic_vertex' -> langchain-google-vertexai
Will attempt to infer model_provider from model if not specified. The
following providers will be inferred based on these model prefixes:
- 'gpt-3...' | 'gpt-4...' | 'o1...' -> 'openai'
- 'claude...' -> 'anthropic'
- 'amazon....' -> 'bedrock'
- 'gemini...' -> 'google_vertexai'
- 'command...' -> 'cohere'
- 'accounts/fireworks...' -> 'fireworks'
- 'mistral...' -> 'mistralai'
configurable_fields: Which model parameters are
configurable:
- None: No configurable fields.
- "any": All fields are configurable. *See Security Note below.*
- Union[List[str], Tuple[str, ...]]: Specified fields are configurable.
Fields are assumed to have config_prefix stripped if there is a
config_prefix. If model is specified, then defaults to None. If model is
not specified, then defaults to ``("model", "model_provider")``.
***Security Note***: Setting ``configurable_fields="any"`` means fields like
api_key, base_url, etc. can be altered at runtime, potentially redirecting
model requests to a different service/user. Make sure that if you're
accepting untrusted configurations that you enumerate the
``configurable_fields=(...)`` explicitly.
config_prefix: If config_prefix is a non-empty string then model will be
configurable at runtime via the
``config["configurable"]["{config_prefix}_{param}"]`` keys. If
config_prefix is an empty string then model will be configurable via
``config["configurable"]["{param}"]``.
temperature: Model temperature.
max_tokens: Max output tokens.
timeout: The maximum time (in seconds) to wait for a response from the model
before canceling the request.
max_retries: The maximum number of attempts the system will make to resend a
request if it fails due to issues like network timeouts or rate limits.
base_url: The URL of the API endpoint where requests are sent.
rate_limiter: A ``BaseRateLimiter`` to space out requests to avoid exceeding
rate limits.
kwargs: Additional model-specific keyword args to pass to
``<<selected ChatModel>>.__init__(model=model_name, **kwargs)``.
Returns:
A BaseChatModel corresponding to the model_name and model_provider specified if
configurability is inferred to be False. If configurable, a chat model emulator
that initializes the underlying model at runtime once a config is passed in.
Raises:
ValueError: If model_provider cannot be inferred or isn't supported.
ImportError: If the model provider integration package is not installed.
.. dropdown:: Init non-configurable model
:open:
.. code-block:: python
# pip install langchain langchain-openai langchain-anthropic langchain-google-vertexai
from langchain.chat_models import init_chat_model
gpt_4o = init_chat_model("gpt-4o", model_provider="openai", temperature=0)
claude_opus = init_chat_model("claude-3-opus-20240229", model_provider="anthropic", temperature=0)
gemini_15 = init_chat_model("gemini-1.5-pro", model_provider="google_vertexai", temperature=0)
gpt_4o.invoke("what's your name")
claude_opus.invoke("what's your name")
gemini_15.invoke("what's your name")
.. dropdown:: Partially configurable model with no default
.. code-block:: python
# pip install langchain langchain-openai langchain-anthropic
from langchain.chat_models import init_chat_model
# We don't need to specify configurable=True if a model isn't specified.
configurable_model = init_chat_model(temperature=0)
configurable_model.invoke(
"what's your name",
config={"configurable": {"model": "gpt-4o"}}
)
# GPT-4o response
configurable_model.invoke(
"what's your name",
config={"configurable": {"model": "claude-3-5-sonnet-20240620"}}
)
# claude-3.5 sonnet response
.. dropdown:: Fully configurable model with a default
.. code-block:: python
# pip install langchain langchain-openai langchain-anthropic
from langchain.chat_models import init_chat_model
configurable_model_with_default = init_chat_model(
"gpt-4o",
model_provider="openai",
configurable_fields="any", # this allows us to configure other params like temperature, max_tokens, etc at runtime.
config_prefix="foo",
temperature=0
)
configurable_model_with_default.invoke("what's your name")
# GPT-4o response with temperature 0
configurable_model_with_default.invoke(
"what's your name",
config={
"configurable": {
"foo_model": "claude-3-5-sonnet-20240620",
"foo_model_provider": "anthropic",
"foo_temperature": 0.6
}
}
)
# Claude-3.5 sonnet response with temperature 0.6
.. dropdown:: Bind tools to a configurable model
You can call any ChatModel declarative methods on a configurable model in the
same way that you would with a normal model.
.. code-block:: python
# pip install langchain langchain-openai langchain-anthropic
from langchain.chat_models import init_chat_model
from pydantic import BaseModel, Field
class GetWeather(BaseModel):
'''Get the current weather in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
class GetPopulation(BaseModel):
'''Get the current population in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
configurable_model = init_chat_model(
"gpt-4o",
configurable_fields=("model", "model_provider"),
temperature=0
)
configurable_model_with_tools = configurable_model.bind_tools([GetWeather, GetPopulation])
configurable_model_with_tools.invoke(
"Which city is hotter today and which is bigger: LA or NY?"
)
# GPT-4o response with tool calls
configurable_model_with_tools.invoke(
"Which city is hotter today and which is bigger: LA or NY?",
config={"configurable": {"model": "claude-3-5-sonnet-20240620"}}
)
# Claude-3.5 sonnet response with tools
.. versionadded:: 0.2.7
.. versionchanged:: 0.2.8
Support for ``configurable_fields`` and ``config_prefix`` added.
.. versionchanged:: 0.2.12
Support for ChatOllama via langchain-ollama package added
(langchain_ollama.ChatOllama). Previously,
the now-deprecated langchain-community version of Ollama was imported
(langchain_community.chat_models.ChatOllama).
Support for langchain_aws.ChatBedrockConverse added
(model_provider="bedrock_converse").
.. versionchanged:: 0.3.5
Out of beta.
""" # noqa: E501
if not model and not configurable_fields:
configurable_fields = ("model", "model_provider")
config_prefix = config_prefix or ""
if config_prefix and not configurable_fields:
warnings.warn(
f"{config_prefix=} has been set but no fields are configurable. Set "
f"`configurable_fields=(...)` to specify the model params that are "
f"configurable."
)
if not configurable_fields:
return _init_chat_model_helper(
cast(str, model), model_provider=model_provider, **kwargs
)
else:
if model:
kwargs["model"] = model
if model_provider:
kwargs["model_provider"] = model_provider
return _ConfigurableModel(
default_config=kwargs,
config_prefix=config_prefix,
configurable_fields=configurable_fields,
)
def _init_chat_model_helper(
model: str, *, model_provider: Optional[str] = None, **kwargs: Any
) -> BaseChatModel:
model, model_provider = _parse_model(model, model_provider)
if model_provider == "openai":
_check_pkg("langchain_openai")
from langchain_openai import ChatOpenAI
return ChatOpenAI(model=model, **kwargs)
elif model_provider == "anthropic":
_check_pkg("langchain_anthropic")
from langchain_anthropic import ChatAnthropic
return ChatAnthropic(model=model, **kwargs) # type: ignore[call-arg]
elif model_provider == "azure_openai":
_check_pkg("langchain_openai")
from langchain_openai import AzureChatOpenAI
return AzureChatOpenAI(model=model, **kwargs)
elif model_provider == "cohere":
_check_pkg("langchain_cohere")
from langchain_cohere import ChatCohere
return ChatCohere(model=model, **kwargs)
elif model_provider == "google_vertexai":
_check_pkg("langchain_google_vertexai")
from langchain_google_vertexai import ChatVertexAI
return ChatVertexAI(model=model, **kwargs)
elif model_provider == "google_genai":
_check_pkg("langchain_google_genai")
from langchain_google_genai import ChatGoogleGenerativeAI
return ChatGoogleGenerativeAI(model=model, **kwargs)
elif model_provider == "fireworks":
_check_pkg("langchain_fireworks")
from langchain_fireworks import ChatFireworks
return ChatFireworks(model=model, **kwargs)
elif model_provider == "ollama":
try:
_check_pkg("langchain_ollama")
from langchain_ollama import ChatOllama
except ImportError:
# For backwards compatibility
try:
_check_pkg("langchain_community")
from langchain_community.chat_models import ChatOllama
except ImportError:
# If both langchain-ollama and langchain-community aren't available,
# raise an error related to langchain-ollama
_check_pkg("langchain_ollama")
return ChatOllama(model=model, **kwargs)
elif model_provider == "together":
_check_pkg("langchain_together")
from langchain_together import ChatTogether
return ChatTogether(model=model, **kwargs)
elif model_provider == "mistralai":
_check_pkg("langchain_mistralai")
from langchain_mistralai import ChatMistralAI
return ChatMistralAI(model=model, **kwargs) # type: ignore[call-arg]
elif model_provider == "huggingface":
_check_pkg("langchain_huggingface")
from langchain_huggingface import ChatHuggingFace
return ChatHuggingFace(model_id=model, **kwargs)
elif model_provider == "groq":
_check_pkg("langchain_groq")
from langchain_groq import ChatGroq
return ChatGroq(model=model, **kwargs)
elif model_provider == "bedrock":
_check_pkg("langchain_aws")
from langchain_aws import ChatBedrock
# TODO: update to use model= once ChatBedrock supports
return ChatBedrock(model_id=model, **kwargs)
elif model_provider == "bedrock_converse":
_check_pkg("langchain_aws")
from langchain_aws import ChatBedrockConverse
return ChatBedrockConverse(model=model, **kwargs)
elif model_provider == "google_anthropic_vertex":
_check_pkg("langchain_google_vertexai")
from langchain_google_vertexai.model_garden import ChatAnthropicVertex
return ChatAnthropicVertex(model=model, **kwargs)
else:
supported = ", ".join(_SUPPORTED_PROVIDERS)
raise ValueError(
f"Unsupported {model_provider=}.\n\nSupported model providers are: "
f"{supported}"
)
_SUPPORTED_PROVIDERS = {
"openai",
"anthropic",
"azure_openai",
"cohere",
"google_vertexai",
"google_genai",
"fireworks",
"ollama",
"together",
"mistralai",
"huggingface",
"groq",
"bedrock",
"bedrock_converse",
"google_anthropic_vertex",
}
def _attempt_infer_model_provider(model_name: str) -> Optional[str]:
if any(model_name.startswith(pre) for pre in ("gpt-3", "gpt-4", "o1")):
return "openai"
elif model_name.startswith("claude"):
return "anthropic"
elif model_name.startswith("command"):
return "cohere"
elif model_name.startswith("accounts/fireworks"):
return "fireworks"
elif model_name.startswith("gemini"):
return "google_vertexai"
elif model_name.startswith("amazon."):
return "bedrock"
elif model_name.startswith("mistral"):
return "mistralai"
else:
return None
def _parse_model(model: str, model_provider: Optional[str]) -> Tuple[str, str]:
if (
not model_provider
and ":" in model
and model.split(":")[0] in _SUPPORTED_PROVIDERS
):
model_provider = model.split(":")[0]
model = ":".join(model.split(":")[1:])
model_provider = model_provider or _attempt_infer_model_provider(model)
if not model_provider:
raise ValueError(
f"Unable to infer model provider for {model=}, please specify "
f"model_provider directly."
)
model_provider = model_provider.replace("-", "_").lower()
return model, model_provider
def _check_pkg(pkg: str) -> None:
if not util.find_spec(pkg):
pkg_kebab = pkg.replace("_", "-")
raise ImportError(
f"Unable to import {pkg_kebab}. Please install with "
f"`pip install -U {pkg_kebab}`"
)
def _remove_prefix(s: str, prefix: str) -> str:
if s.startswith(prefix):
s = s[len(prefix) :]
return s
_DECLARATIVE_METHODS = ("bind_tools", "with_structured_output")
class _ConfigurableModel(Runnable[LanguageModelInput, Any]):
def __init__(
self,
*,
default_config: Optional[dict] = None,
configurable_fields: Union[Literal["any"], List[str], Tuple[str, ...]] = "any",
config_prefix: str = "",
queued_declarative_operations: Sequence[Tuple[str, Tuple, Dict]] = (),
) -> None:
self._default_config: dict = default_config or {}
self._configurable_fields: Union[Literal["any"], List[str]] = (
configurable_fields
if configurable_fields == "any"
else list(configurable_fields)
)
self._config_prefix = (
config_prefix + "_"
if config_prefix and not config_prefix.endswith("_")
else config_prefix
)
self._queued_declarative_operations: List[Tuple[str, Tuple, Dict]] = list(
queued_declarative_operations
)
def __getattr__(self, name: str) -> Any:
if name in _DECLARATIVE_METHODS:
# Declarative operations that cannot be applied until after an actual model
# object is instantiated. So instead of returning the actual operation,
# we record the operation and its arguments in a queue. This queue is
# then applied in order whenever we actually instantiate the model (in
# self._model()).
def queue(*args: Any, **kwargs: Any) -> _ConfigurableModel:
queued_declarative_operations = list(
self._queued_declarative_operations
)
queued_declarative_operations.append((name, args, kwargs))
return _ConfigurableModel(
default_config=dict(self._default_config),
configurable_fields=list(self._configurable_fields)
if isinstance(self._configurable_fields, list)
else self._configurable_fields,
config_prefix=self._config_prefix,
queued_declarative_operations=queued_declarative_operations,
)
return queue
elif self._default_config and (model := self._model()) and hasattr(model, name):
return getattr(model, name)
else:
msg = f"{name} is not a BaseChatModel attribute"
if self._default_config:
msg += " and is not implemented on the default model"
msg += "."
raise AttributeError(msg)
def _model(self, config: Optional[RunnableConfig] = None) -> Runnable:
params = {**self._default_config, **self._model_params(config)}
model = _init_chat_model_helper(**params)
for name, args, kwargs in self._queued_declarative_operations:
model = getattr(model, name)(*args, **kwargs)
return model
def _model_params(self, config: Optional[RunnableConfig]) -> dict:
config = ensure_config(config)
model_params = {
_remove_prefix(k, self._config_prefix): v
for k, v in config.get("configurable", {}).items()
if k.startswith(self._config_prefix)
}
if self._configurable_fields != "any":
model_params = {
k: v for k, v in model_params.items() if k in self._configurable_fields
}
return model_params
def with_config(
self,
config: Optional[RunnableConfig] = None,
**kwargs: Any,
) -> _ConfigurableModel:
"""Bind config to a Runnable, returning a new Runnable."""
config = RunnableConfig(**(config or {}), **cast(RunnableConfig, kwargs))
model_params = self._model_params(config)
remaining_config = {k: v for k, v in config.items() if k != "configurable"}
remaining_config["configurable"] = {
k: v
for k, v in config.get("configurable", {}).items()
if _remove_prefix(k, self._config_prefix) not in model_params
}
queued_declarative_operations = list(self._queued_declarative_operations)
if remaining_config:
queued_declarative_operations.append(
("with_config", (), {"config": remaining_config})
)
return _ConfigurableModel(
default_config={**self._default_config, **model_params},
configurable_fields=list(self._configurable_fields)
if isinstance(self._configurable_fields, list)
else self._configurable_fields,
config_prefix=self._config_prefix,
queued_declarative_operations=queued_declarative_operations,
)
@property
def InputType(self) -> TypeAlias:
"""Get the input type for this runnable."""
from langchain_core.prompt_values import (
ChatPromptValueConcrete,
StringPromptValue,
)
# This is a version of LanguageModelInput which replaces the abstract
# base class BaseMessage with a union of its subclasses, which makes
# for a much better schema.
return Union[
str,
Union[StringPromptValue, ChatPromptValueConcrete],
List[AnyMessage],
]
def invoke(
self,
input: LanguageModelInput,
config: Optional[RunnableConfig] = None,
**kwargs: Any,
) -> Any:
return self._model(config).invoke(input, config=config, **kwargs)
async def ainvoke(
self,
input: LanguageModelInput,
config: Optional[RunnableConfig] = None,
**kwargs: Any,
) -> Any:
return await self._model(config).ainvoke(input, config=config, **kwargs)
def stream(
self,
input: LanguageModelInput,
config: Optional[RunnableConfig] = None,
**kwargs: Optional[Any],
) -> Iterator[Any]:
yield from self._model(config).stream(input, config=config, **kwargs)
async def astream(
self,
input: LanguageModelInput,
config: Optional[RunnableConfig] = None,
**kwargs: Optional[Any],
) -> AsyncIterator[Any]:
async for x in self._model(config).astream(input, config=config, **kwargs):
yield x
def batch(
self,
inputs: List[LanguageModelInput],
config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None,
*,
return_exceptions: bool = False,
**kwargs: Optional[Any],
) -> List[Any]:
config = config or None
# If <= 1 config use the underlying models batch implementation.
if config is None or isinstance(config, dict) or len(config) <= 1:
if isinstance(config, list):
config = config[0]
return self._model(config).batch(
inputs, config=config, return_exceptions=return_exceptions, **kwargs
)
# If multiple configs default to Runnable.batch which uses executor to invoke
# in parallel.
else:
return super().batch(
inputs, config=config, return_exceptions=return_exceptions, **kwargs
)
async def abatch(
self,
inputs: List[LanguageModelInput],
config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None,
*,
return_exceptions: bool = False,
**kwargs: Optional[Any],
) -> List[Any]:
config = config or None
# If <= 1 config use the underlying models batch implementation.
if config is None or isinstance(config, dict) or len(config) <= 1:
if isinstance(config, list):
config = config[0]
return await self._model(config).abatch(
inputs, config=config, return_exceptions=return_exceptions, **kwargs
)
# If multiple configs default to Runnable.batch which uses executor to invoke
# in parallel.
else:
return await super().abatch(
inputs, config=config, return_exceptions=return_exceptions, **kwargs
)
def batch_as_completed(
self,
inputs: Sequence[LanguageModelInput],
config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None,
*,
return_exceptions: bool = False,
**kwargs: Any,
) -> Iterator[Tuple[int, Union[Any, Exception]]]:
config = config or None
# If <= 1 config use the underlying models batch implementation.
if config is None or isinstance(config, dict) or len(config) <= 1:
if isinstance(config, list):
config = config[0]
yield from self._model(cast(RunnableConfig, config)).batch_as_completed( # type: ignore[call-overload]
inputs, config=config, return_exceptions=return_exceptions, **kwargs
)
# If multiple configs default to Runnable.batch which uses executor to invoke
# in parallel.
else:
yield from super().batch_as_completed( # type: ignore[call-overload]
inputs, config=config, return_exceptions=return_exceptions, **kwargs
)
async def abatch_as_completed(
self,
inputs: Sequence[LanguageModelInput],
config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None,
*,
return_exceptions: bool = False,
**kwargs: Any,
) -> AsyncIterator[Tuple[int, Any]]:
config = config or None
# If <= 1 config use the underlying models batch implementation.
if config is None or isinstance(config, dict) or len(config) <= 1:
if isinstance(config, list):
config = config[0]
async for x in self._model(
cast(RunnableConfig, config)
).abatch_as_completed( # type: ignore[call-overload]
inputs, config=config, return_exceptions=return_exceptions, **kwargs
):
yield x
# If multiple configs default to Runnable.batch which uses executor to invoke
# in parallel.
else:
async for x in super().abatch_as_completed( # type: ignore[call-overload]
inputs, config=config, return_exceptions=return_exceptions, **kwargs
):
yield x
def transform(
self,
input: Iterator[LanguageModelInput],
config: Optional[RunnableConfig] = None,
**kwargs: Optional[Any],
) -> Iterator[Any]:
for x in self._model(config).transform(input, config=config, **kwargs):
yield x
async def atransform(
self,
input: AsyncIterator[LanguageModelInput],
config: Optional[RunnableConfig] = None,
**kwargs: Optional[Any],
) -> AsyncIterator[Any]:
async for x in self._model(config).atransform(input, config=config, **kwargs):
yield x
@overload
def astream_log(
self,
input: Any,
config: Optional[RunnableConfig] = None,
*,
diff: Literal[True] = True,
with_streamed_output_list: bool = True,
include_names: Optional[Sequence[str]] = None,
include_types: Optional[Sequence[str]] = None,
include_tags: Optional[Sequence[str]] = None,
exclude_names: Optional[Sequence[str]] = None,
exclude_types: Optional[Sequence[str]] = None,
exclude_tags: Optional[Sequence[str]] = None,
**kwargs: Any,
) -> AsyncIterator[RunLogPatch]: ...
@overload
def astream_log(
self,
input: Any,
config: Optional[RunnableConfig] = None,
*,
diff: Literal[False],
with_streamed_output_list: bool = True,
include_names: Optional[Sequence[str]] = None,
include_types: Optional[Sequence[str]] = None,
include_tags: Optional[Sequence[str]] = None,
exclude_names: Optional[Sequence[str]] = None,
exclude_types: Optional[Sequence[str]] = None,
exclude_tags: Optional[Sequence[str]] = None,
**kwargs: Any,
) -> AsyncIterator[RunLog]: ...
async def astream_log(
self,
input: Any,
config: Optional[RunnableConfig] = None,
*,
diff: bool = True,
with_streamed_output_list: bool = True,
include_names: Optional[Sequence[str]] = None,
include_types: Optional[Sequence[str]] = None,
include_tags: Optional[Sequence[str]] = None,
exclude_names: Optional[Sequence[str]] = None,
exclude_types: Optional[Sequence[str]] = None,
exclude_tags: Optional[Sequence[str]] = None,
**kwargs: Any,
) -> Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]:
async for x in self._model(config).astream_log( # type: ignore[call-overload, misc]
input,
config=config,
diff=diff,
with_streamed_output_list=with_streamed_output_list,
include_names=include_names,
include_types=include_types,
include_tags=include_tags,
exclude_tags=exclude_tags,
exclude_types=exclude_types,
exclude_names=exclude_names,
**kwargs,
):
yield x
async def astream_events(
self,
input: Any,
config: Optional[RunnableConfig] = None,
*,
version: Literal["v1", "v2"],
include_names: Optional[Sequence[str]] = None,
include_types: Optional[Sequence[str]] = None,
include_tags: Optional[Sequence[str]] = None,
exclude_names: Optional[Sequence[str]] = None,
exclude_types: Optional[Sequence[str]] = None,
exclude_tags: Optional[Sequence[str]] = None,
**kwargs: Any,
) -> AsyncIterator[StreamEvent]:
async for x in self._model(config).astream_events(
input,
config=config,
version=version,
include_names=include_names,
include_types=include_types,
include_tags=include_tags,
exclude_tags=exclude_tags,
exclude_types=exclude_types,
exclude_names=exclude_names,
**kwargs,
):
yield x
# Explicitly added to satisfy downstream linters.
def bind_tools(
self,
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
**kwargs: Any,
) -> Runnable[LanguageModelInput, BaseMessage]:
return self.__getattr__("bind_tools")(tools, **kwargs)
# Explicitly added to satisfy downstream linters.
def with_structured_output(
self, schema: Union[Dict, Type[BaseModel]], **kwargs: Any
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
return self.__getattr__("with_structured_output")(schema, **kwargs)
|