|
--- |
|
license: other |
|
license_name: qwen |
|
language: |
|
- th |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
tags: |
|
- openthaigpt |
|
- qwen |
|
--- |
|
|
|
# 🇹🇭 OpenThaiGPT 7b 1.5 Instruct |
|
![OpenThaiGPT](https://1173516064-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FvvbWvIIe82Iv1yHaDBC5%2Fuploads%2Fb8eiMDaqiEQL6ahbAY0h%2Fimage.png?alt=media&token=6fce78fd-2cca-4c0a-9648-bd5518e644ce) |
|
[More Info](https://openthaigpt.aieat.or.th/) |
|
|
|
🇹🇭 **OpenThaiGPT 7b Version 1.5** is an advanced 7-billion-parameter Thai language chat model based on Qwen v2.5 released on September 30, 2024. It has been specifically fine-tuned on over 2,000,000 Thai instruction pairs and is capable of answering Thai-specific domain questions. |
|
|
|
## Online Demo: |
|
https://demo72b.aieat.or.th/ |
|
|
|
## Example code for API Calling |
|
https://github.com/OpenThaiGPT/openthaigpt1.5_api_examples |
|
|
|
## Highlights |
|
- **State-of-the-art Thai language LLM**, achieving the highest average scores across various Thai language exams compared to other open-source Thai LLMs. |
|
- **Multi-turn conversation support** for extended dialogues. |
|
- **Retrieval Augmented Generation (RAG) compatibility** for enhanced response generation. |
|
- **Impressive context handling**: Processes up to 131,072 tokens of input and generates up to 8,192 tokens, enabling detailed and complex interactions. |
|
|
|
## Benchmark on [OpenThaiGPT Eval](https://huggingface.co/datasets/openthaigpt/openthaigpt_eval) |
|
** Please take a look at ``openthaigpt/openthaigpt1.5-7b-instruct`` for this model's evaluation result. |
|
| **Exam names** | **scb10x/llama-3-typhoon-v1.5x-8b-instruct** | **meta-llama/Llama-3.1-7B-Instruct** | **Qwen/Qwen2.5-7B-Instruct_stat** | **openthaigpt/openthaigpt1.5-7b** | |
|
|:------------------------------:|:--------------------------------------------:|:------------------------------------:|:---------------------------------:|:---------------------------------:| |
|
| **01_a_level** | 46.67% | 47.50% | 58.33% | 60.00% | |
|
| **02_tgat** | 32.00% | 36.00% | 32.00% | 36.00% | |
|
| **03_tpat1** | 52.50% | 55.00% | 57.50% | 57.50% | |
|
| **04_investment_consult** | 56.00% | 48.00% | 68.00% | 76.00% | |
|
| **05_facebook_beleble_th_200** | 78.00% | 73.00% | 79.00% | 81.00% | |
|
| **06_xcopa_th_200** | 79.50% | 69.00% | 80.50% | 81.00% | |
|
| **07_xnli2.0_th_200** | 56.50% | 55.00% | 53.00% | 54.50% | |
|
| **08_onet_m3_thai** | 48.00% | 32.00% | 72.00% | 64.00% | |
|
| **09_onet_m3_social** | 75.00% | 50.00% | 90.00% | 80.00% | |
|
| **10_onet_m3_math** | 25.00% | 18.75% | 31.25% | 31.25% | |
|
| **11_onet_m3_science** | 46.15% | 42.31% | 46.15% | 46.15% | |
|
| **12_onet_m3_english** | 70.00% | 76.67% | 86.67% | 83.33% | |
|
| **13_onet_m6_thai** | 47.69% | 29.23% | 46.15% | 53.85% | |
|
| **14_onet_m6_math** | 29.41% | 17.65% | 29.41% | 29.41% | |
|
| **15_onet_m6_social** | 50.91% | 43.64% | 56.36% | 58.18% | |
|
| **16_onet_m6_science** | 42.86% | 32.14% | 57.14% | 57.14% | |
|
| **17_onet_m6_english** | 65.38% | 71.15% | 78.85% | 80.77% | |
|
| **Micro Average** | 60.65% | 55.60% | 64.41% | <b style="color:blue">65.78%</b> | |
|
|
|
|
|
Thai language multiple choice exams, Test on unseen test set, Zero-shot learning. Benchmark source code and exams information: https://github.com/OpenThaiGPT/openthaigpt_eval |
|
|
|
(Updated on: 30 September 2024) |
|
|
|
## Benchmark on [scb10x/thai_exam](https://huggingface.co/datasets/scb10x/thai_exam) |
|
|
|
| Models | **Thai Exam (Acc)** | |
|
|:----------------------------------------------------------:|:-------------------:| |
|
| **api/claude-3-5-sonnet-20240620** | 69.2 | |
|
| <b style="color:blue">**openthaigpt/openthaigpt1.5-72b-instruct***</b> | <b style="color:blue">64.07</b> | |
|
| **api/gpt-4o-2024-05-13** | 63.89 | |
|
| **hugging-quants/Meta-Llama-3.1-405B-Instruct-AWQ-INT4** | 63.54 | |
|
| **Qwen/Qwen2-72B-Instruct** | 58.23 | |
|
| **meta-llama/Meta-Llama-3.1-70B-Instruct** | 58.23 | |
|
| **scb10x/llama-3-typhoon-v1.5x-70b-instruct** | 58.76 | |
|
| **Qwen/Qwen2.5-14B-Instruct** | 57.35 | |
|
| **api/gpt-4o-mini-2024-07-18** | 54.51 | |
|
| <b style="color:blue">**openthaigpt/openthaigpt1.5-7b-instruct***</b> | <b style="color:blue">52.04</b> | |
|
| **SeaLLMs/SeaLLMs-v3-7B-Chat** | 51.33 | |
|
| **openthaigpt/openthaigpt-1.0.0-70b-chat** | 50.09 | |
|
|
|
<b style="color:blue">*</b> Evaluated by OpenThaiGPT team using [scb10x/thai_exam](https://huggingface.co/datasets/scb10x/thai_exam). |
|
|
|
## Licenses |
|
* Built with Qwen |
|
* Qwen License: Allow **Research** and |
|
**Commercial uses** but if your user base exceeds 100 million monthly active users, you need to negotiate a separate commercial license. Please see LICENSE file for more information.<br> |
|
|
|
## Sponsors |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/5fcd9c426d942eaf4d1ebd30/3kjN6kuTzXDXQ6o1RFvHX.png" width="600px"> |
|
|
|
## Supports |
|
- Official website: https://openthaigpt.aieat.or.th |
|
- Facebook page: https://web.facebook.com/groups/openthaigpt |
|
- A Discord server for discussion and support [here](https://discord.gg/rUTp6dfVUF) |
|
- E-mail: kobkrit@aieat.or.th |
|
|
|
## Prompt Format |
|
Prompt format is based on ChatML. |
|
``` |
|
<|im_start|>system\n{sytem_prompt}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n |
|
``` |
|
|
|
### System prompt: |
|
``` |
|
คุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์ |
|
``` |
|
|
|
### Examples |
|
|
|
#### Single Turn Conversation Example |
|
``` |
|
<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\n |
|
``` |
|
|
|
#### Single Turn Conversation with Context (RAG) Example |
|
``` |
|
<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nกรุงเทพมหานคร เป็นเมืองหลวง นครและมหานครที่มีประชากรมากที่สุดของประเทศไทย กรุงเทพมหานครมีพื้นที่ทั้งหมด 1,568.737 ตร.กม. มีประชากรตามทะเบียนราษฎรกว่า 8 ล้านคน\nกรุงเทพมหานครมีพื้นที่เท่าไร่<|im_end|>\n<|im_start|>assistant\n |
|
``` |
|
|
|
#### Multi Turn Conversation Example |
|
|
|
##### First turn |
|
``` |
|
<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\n |
|
``` |
|
|
|
##### Second turn |
|
``` |
|
<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\nสวัสดีครับ ยินดีต้อนรับครับ คุณต้องการให้ฉันช่วยอะไรครับ?<|im_end|>\n<|im_start|>user\nกรุงเทพมหานคร ชื่อเต็มยาวๆคืออะไร<|im_end|>\n<|im_start|>assistant\n |
|
``` |
|
|
|
##### Result |
|
``` |
|
<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\nสวัสดีครับ ยินดีต้อนรับครับ คุณต้องการให้ฉันช่วยอะไรครับ?<|im_end|>\n<|im_start|>user\nกรุงเทพมหานคร ชื่อเต็มยาวๆคืออะไร<|im_end|>\n<|im_start|>assistant\nชื่อเต็มของกรุงเทพมหานครคือ \"กรุงเทพมหานคร อมรรัตนโกสินทร์ มหินทรายุธยา มหาดิลกภพ นพรัตนราชธานีบูรีรมย์ อุดมราชนิเวศน์มหาสถาน อมรพิมานอวตารสถิต สักกะทัตติยวิษณุกรรมประสิทธิ์\" |
|
``` |
|
|
|
## How to use |
|
|
|
### Huggingface |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "openthaigpt/openthaigpt1.5-72b-instruct" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
prompt = "ประเทศไทยคืออะไร" |
|
messages = [ |
|
{"role": "system", "content": "คุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์"}, |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=512 |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
``` |
|
|
|
### vLLM |
|
|
|
1. Install VLLM (https://github.com/vllm-project/vllm) |
|
|
|
2. Run server |
|
```bash |
|
vllm serve openthaigpt/openthaigpt1.5-72b-instruct --tensor-parallel-size 4 |
|
``` |
|
* Note, change ``--tensor-parallel-size 4`` to the amount of available GPU cards. |
|
|
|
3. Run inference (CURL example) |
|
```bash |
|
curl -X POST 'http://127.0.0.1:8000/v1/completions' \ |
|
-H 'Content-Type: application/json' \ |
|
-d '{ |
|
"model": ".", |
|
"prompt": "<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\n", |
|
"max_tokens": 512, |
|
"temperature": 0.7, |
|
"top_p": 0.8, |
|
"top_k": 40, |
|
"stop": ["<|im_end|>"] |
|
}' |
|
``` |
|
|
|
### Processing Long Texts |
|
The current `config.json` is set for context length up to 32,768 tokens. |
|
To handle extensive inputs exceeding 32,768 tokens, we utilize [YaRN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts. |
|
|
|
For supported frameworks, you could add the following to `config.json` to enable YaRN: |
|
```json |
|
{ |
|
... |
|
"rope_scaling": { |
|
"factor": 4.0, |
|
"original_max_position_embeddings": 32768, |
|
"type": "yarn" |
|
} |
|
} |
|
``` |
|
|
|
### GPU Memory Requirements |
|
| **Number of Parameters** | **FP 16 bits** | **8 bits (Quantized)** | **4 bits (Quantized)** | **Example Graphic Card for 4 bits** | |
|
|------------------|----------------|------------------------|------------------------|---------------------------------------------| |
|
| **7b** | 24 GB | 12 GB | 6 GB | Nvidia RTX 4060 8GB | |
|
| **13b** | 48 GB | 24 GB | 12 GB | Nvidia RTX 4070 16GB | |
|
| **72b** | 192 GB | 96 GB | 48 GB | Nvidia RTX 4090 24GB x 2 cards | |
|
|
|
### Authors |
|
* Sumeth Yuenyong (sumeth.yue@mahidol.edu) |
|
* Kobkrit Viriyayudhakorn (kobkrit@aieat.or.th) |
|
* Apivadee Piyatumrong (apivadee.piy@nectec.or.th) |
|
* Jillaphat Jaroenkantasima (autsadang41@gmail.com) |
|
* Thaweewat Rugsujarit (thaweewr@scg.com) |
|
* Norapat Buppodom (new@norapat.com) |
|
* Koravich Sangkaew (kwankoravich@gmail.com) |
|
* Peerawat Rojratchadakorn (peerawat.roj@gmail.com) |
|
* Surapon Nonesung (nonesungsurapon@gmail.com) |
|
* Chanon Utupon (chanon.utupon@gmail.com) |
|
* Sadhis Wongprayoon (sadhis.tae@gmail.com) |
|
* Nucharee Thongthungwong (nuchhub@hotmail.com) |
|
* Chawakorn Phiantham (mondcha1507@gmail.com) |
|
* Patteera Triamamornwooth (patt.patteera@gmail.com) |
|
* Nattarika Juntarapaoraya (natt.juntara@gmail.com) |
|
* Kriangkrai Saetan (kraitan.ss21@gmail.com) |
|
* Pitikorn Khlaisamniang (pitikorn32@gmail.com) |
|
|
|
<i>Disclaimer: Provided responses are not guaranteed.</i> |