File size: 4,457 Bytes
ef1c7f0
 
 
 
4767762
 
 
ef1c7f0
 
 
 
 
d57d734
 
df38e94
 
d57d734
 
df38e94
 
d57d734
df38e94
f01a0b0
df38e94
6c07f3a
 
3b908bb
ee973ab
6c07f3a
ef1c7f0
86b2325
4e7dec6
 
 
 
 
f01a0b0
 
 
4e7dec6
 
ef1c7f0
 
 
 
 
 
 
 
df38e94
ef1c7f0
78c0802
ef1c7f0
6c07f3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef1c7f0
 
 
 
 
 
6c07f3a
ef1c7f0
6c07f3a
 
 
 
 
 
 
 
 
 
 
 
 
 
ef1c7f0
 
 
6c07f3a
 
 
ee973ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c07f3a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
---
tags:
- spacy
- token-classification
widget:
- text: "Section 319 Cr.P.C. contemplates a situation where the evidence adduced by the prosecution for Respondent No.3-G. Sambiah on 20th June 1984"
- text: "In The High Court Of Kerala At Ernakulam\n\nCrl Mc No. 1622 of 2006()\n\n\n1. T.R.Ajayan, S/O. O.Raman,\n                      ...  Petitioner\n\n                        Vs\n\n\n\n1. M.Ravindran,\n                       ...       Respondent\n\n2. Mrs. Nirmala Dinesh, W/O. Dinesh,\n\n                For Petitioner  :Sri.A.Kumar\n\n                For Respondent  :Smt.M.K.Pushpalatha\n\nThe Hon'ble Mr. Justice P.R.Raman\nThe Hon'ble Mr. Justice V.K.Mohanan\n\n Dated :07/01/2008\n\n O R D E R\n"
language:
- en
license: mit
model-index:
- name: en_legal_ner_trf
  results:
  - task:
      type: token-classification             
      name: Named Entity Recognition              
    dataset:
      type: Named Entity Recognition 
      name: InLegalNER
      split: Test       
    metrics:
      - type: F1-Score         
        value: 91.076
        name: Test F1-Score              

---
# Paper details
[Named Entity Recognition in Indian court judgments](https://aclanthology.org/2022.nllp-1.15/)

---
Indian Legal Named Entity Recognition(NER): Identifying relevant named entities in an Indian legal judgement using legal NER trained on [spacy](https://github.com/explosion/spaCy).

### Scores

| Type | Score |
| --- | --- |
| **F1-Score** | **91.076** |
| `Precision` | 91.979 |
| `Recall` | 90.19 |


| Feature | Description |
| --- | --- |
| **Name** | `en_legal_ner_trf` |
| **Version** | `3.2.0` |
| **spaCy** | `>=3.2.2,<3.3.0` |
| **Default Pipeline** | `transformer`, `ner` |
| **Components** | `transformer`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [InLegalNER Train Data](https://storage.googleapis.com/indianlegalbert/OPEN_SOURCED_FILES/NER/NER_TRAIN.zip) [GitHub](https://github.com/Legal-NLP-EkStep/legal_NER)|
| **License** | `MIT` |
| **Author** | [Aman Tiwari](https://www.linkedin.com/in/amant555/) |

## Load Pretrained Model

Install the model using pip

```sh
pip install https://huggingface.co/opennyaiorg/en_legal_ner_trf/resolve/main/en_legal_ner_trf-any-py3-none-any.whl
```

Using pretrained NER model

```python
# Using spacy.load().
import spacy
nlp = spacy.load("en_legal_ner_trf")
text = "Section 319 Cr.P.C. contemplates a situation where the evidence adduced by the prosecution for Respondent No.3-G. Sambiah on 20th June 1984"
doc = nlp(text)

# Print indentified entites
for ent in doc.ents:
     print(ent,ent.label_)

##OUTPUT     
#Section 319 PROVISION
#Cr.P.C. STATUTE
#G. Sambiah RESPONDENT
#20th June 1984 DATE
```


### Label Scheme

<details>

<summary>View label scheme (14 labels for 1 components)</summary>

| ENTITY | BELONGS TO |
| --- | --- |
| `LAWYER` | PREAMBLE |
| `COURT` | PREAMBLE, JUDGEMENT |
| `JUDGE` | PREAMBLE, JUDGEMENT |
| `PETITIONER` | PREAMBLE, JUDGEMENT |
| `RESPONDENT` | PREAMBLE, JUDGEMENT |
| `CASE_NUMBER` | JUDGEMENT | 
| `GPE` | JUDGEMENT |
| `DATE` | JUDGEMENT |
| `ORG` | JUDGEMENT |
| `STATUTE` | JUDGEMENT |
| `WITNESS` | JUDGEMENT |
| `PRECEDENT` | JUDGEMENT |
| `PROVISION` | JUDGEMENT |
| `OTHER_PERSON` | JUDGEMENT |

</details>

## Author - Publication

```
@inproceedings{kalamkar-etal-2022-named,
    title = "Named Entity Recognition in {I}ndian court judgments",
    author = "Kalamkar, Prathamesh  and
      Agarwal, Astha  and
      Tiwari, Aman  and
      Gupta, Smita  and
      Karn, Saurabh  and
      Raghavan, Vivek",
    booktitle = "Proceedings of the Natural Legal Language Processing Workshop 2022",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, United Arab Emirates (Hybrid)",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.nllp-1.15",
    doi = "10.18653/v1/2022.nllp-1.15",
    pages = "184--193",
    abstract = "Identification of named entities from legal texts is an essential building block for developing other legal Artificial Intelligence applications. Named Entities in legal texts are slightly different and more fine-grained than commonly used named entities like Person, Organization, Location etc. In this paper, we introduce a new corpus of 46545 annotated legal named entities mapped to 14 legal entity types. The Baseline model for extracting legal named entities from judgment text is also developed.",
}
```