File size: 9,457 Bytes
f2e3176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import numpy as np

from sklearn.model_selection import KFold
from scipy import interpolate
import sklearn
from sklearn.decomposition import PCA

import cv2 as cv
from tqdm import tqdm


def calculate_roc(thresholds,
                  embeddings1,
                  embeddings2,
                  actual_issame,
                  nrof_folds=10,
                  pca=0):
    assert (embeddings1.shape[0] == embeddings2.shape[0])
    assert (embeddings1.shape[1] == embeddings2.shape[1])
    nrof_pairs = min(len(actual_issame), embeddings1.shape[0])
    nrof_thresholds = len(thresholds)
    k_fold = KFold(n_splits=nrof_folds, shuffle=False)

    tprs = np.zeros((nrof_folds, nrof_thresholds))
    fprs = np.zeros((nrof_folds, nrof_thresholds))
    accuracy = np.zeros((nrof_folds))
    indices = np.arange(nrof_pairs)
    # print('pca', pca)

    if pca == 0:
        diff = np.subtract(embeddings1, embeddings2)
        dist = np.sum(np.square(diff), 1)

    for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)):
        # print('train_set', train_set)
        # print('test_set', test_set)
        if pca > 0:
            print('doing pca on', fold_idx)
            embed1_train = embeddings1[train_set]
            embed2_train = embeddings2[train_set]
            _embed_train = np.concatenate((embed1_train, embed2_train), axis=0)
            # print(_embed_train.shape)
            pca_model = PCA(n_components=pca)
            pca_model.fit(_embed_train)
            embed1 = pca_model.transform(embeddings1)
            embed2 = pca_model.transform(embeddings2)
            embed1 = sklearn.preprocessing.normalize(embed1)
            embed2 = sklearn.preprocessing.normalize(embed2)
            # print(embed1.shape, embed2.shape)
            diff = np.subtract(embed1, embed2)
            dist = np.sum(np.square(diff), 1)

        # Find the best threshold for the fold
        acc_train = np.zeros((nrof_thresholds))
        for threshold_idx, threshold in enumerate(thresholds):
            _, _, acc_train[threshold_idx] = calculate_accuracy(
                threshold, dist[train_set], actual_issame[train_set])
        best_threshold_index = np.argmax(acc_train)
        for threshold_idx, threshold in enumerate(thresholds):
            tprs[fold_idx,
                 threshold_idx], fprs[fold_idx,
                                      threshold_idx], _ = calculate_accuracy(
                threshold, dist[test_set],
                actual_issame[test_set])
        _, _, accuracy[fold_idx] = calculate_accuracy(
            thresholds[best_threshold_index], dist[test_set],
            actual_issame[test_set])

    tpr = np.mean(tprs, 0)
    fpr = np.mean(fprs, 0)
    return tpr, fpr, accuracy


def calculate_accuracy(threshold, dist, actual_issame):
    predict_issame = np.less(dist, threshold)
    tp = np.sum(np.logical_and(predict_issame, actual_issame))
    fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame)))
    tn = np.sum(
        np.logical_and(np.logical_not(predict_issame),
                       np.logical_not(actual_issame)))
    fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame))

    tpr = 0 if (tp + fn == 0) else float(tp) / float(tp + fn)
    fpr = 0 if (fp + tn == 0) else float(fp) / float(fp + tn)
    acc = float(tp + tn) / dist.size
    return tpr, fpr, acc


def calculate_val(thresholds,
                  embeddings1,
                  embeddings2,
                  actual_issame,
                  far_target,
                  nrof_folds=10):
    assert (embeddings1.shape[0] == embeddings2.shape[0])
    assert (embeddings1.shape[1] == embeddings2.shape[1])
    nrof_pairs = min(len(actual_issame), embeddings1.shape[0])
    nrof_thresholds = len(thresholds)
    k_fold = KFold(n_splits=nrof_folds, shuffle=False)

    val = np.zeros(nrof_folds)
    far = np.zeros(nrof_folds)

    diff = np.subtract(embeddings1, embeddings2)
    dist = np.sum(np.square(diff), 1)
    indices = np.arange(nrof_pairs)

    for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)):

        # Find the threshold that gives FAR = far_target
        far_train = np.zeros(nrof_thresholds)
        for threshold_idx, threshold in enumerate(thresholds):
            _, far_train[threshold_idx] = calculate_val_far(
                threshold, dist[train_set], actual_issame[train_set])
        if np.max(far_train) >= far_target:
            f = interpolate.interp1d(far_train, thresholds, kind='slinear')
            threshold = f(far_target)
        else:
            threshold = 0.0

        val[fold_idx], far[fold_idx] = calculate_val_far(
            threshold, dist[test_set], actual_issame[test_set])

    val_mean = np.mean(val)
    far_mean = np.mean(far)
    val_std = np.std(val)
    return val_mean, val_std, far_mean


def calculate_val_far(threshold, dist, actual_issame):
    predict_issame = np.less(dist, threshold)
    true_accept = np.sum(np.logical_and(predict_issame, actual_issame))
    false_accept = np.sum(
        np.logical_and(predict_issame, np.logical_not(actual_issame)))
    n_same = np.sum(actual_issame)
    n_diff = np.sum(np.logical_not(actual_issame))
    val = float(true_accept) / float(n_same)
    far = float(false_accept) / float(n_diff)
    return val, far


def evaluate(embeddings, actual_issame, nrof_folds=10, pca=0):
    # Calculate evaluation metrics
    thresholds = np.arange(0, 4, 0.01)
    embeddings1 = embeddings[0::2]
    embeddings2 = embeddings[1::2]
    tpr, fpr, accuracy = calculate_roc(thresholds,
                                       embeddings1,
                                       embeddings2,
                                       np.asarray(actual_issame),
                                       nrof_folds=nrof_folds,
                                       pca=pca)
    thresholds = np.arange(0, 4, 0.001)
    val, val_std, far = calculate_val(thresholds,
                                      embeddings1,
                                      embeddings2,
                                      np.asarray(actual_issame),
                                      1e-3,
                                      nrof_folds=nrof_folds)
    return tpr, fpr, accuracy, val, val_std, far


class LFW:
    def __init__(self, root, target_size=250):
        self.LFW_IMAGE_SIZE = 250

        self.lfw_root = root
        self.target_size = target_size

        self.lfw_pairs_path = os.path.join(self.lfw_root, 'view2/pairs.txt')
        self.image_path_pattern = os.path.join(self.lfw_root, 'lfw', '{person_name}', '{image_name}')

        self.lfw_image_paths, self.id_list = self.load_pairs()

    @property
    def name(self):
        return 'LFW'

    def __len__(self):
        return len(self.lfw_image_paths)

    @property
    def ids(self):
        return self.id_list

    def load_pairs(self):
        image_paths = []
        id_list = []
        with open(self.lfw_pairs_path, 'r') as f:
            for line in f.readlines()[1:]:
                line = line.strip().split()
                if len(line) == 3:
                    person_name = line[0]
                    image1_name = '{}_{:04d}.jpg'.format(person_name, int(line[1]))
                    image2_name = '{}_{:04d}.jpg'.format(person_name, int(line[2]))
                    image_paths += [
                        self.image_path_pattern.format(person_name=person_name, image_name=image1_name),
                        self.image_path_pattern.format(person_name=person_name, image_name=image2_name)
                    ]
                    id_list.append(True)
                elif len(line) == 4:
                    person1_name = line[0]
                    image1_name = '{}_{:04d}.jpg'.format(person1_name, int(line[1]))
                    person2_name = line[2]
                    image2_name = '{}_{:04d}.jpg'.format(person2_name, int(line[3]))
                    image_paths += [
                        self.image_path_pattern.format(person_name=person1_name, image_name=image1_name),
                        self.image_path_pattern.format(person_name=person2_name, image_name=image2_name)
                    ]
                    id_list.append(False)
        return image_paths, id_list

    def __getitem__(self, key):
        img = cv.imread(self.lfw_image_paths[key])
        if self.target_size != self.LFW_IMAGE_SIZE:
            img = cv.resize(img, (self.target_size, self.target_size))
        return img

    def eval(self, model):
        ids = self.ids
        embeddings = np.zeros(shape=(len(self), 128))
        face_bboxes = np.load("./datasets/lfw_face_bboxes.npy")
        for idx, img in tqdm(enumerate(self), desc="Evaluating {} with {} val set".format(model.name, self.name)):
            embedding = model.infer(img, face_bboxes[idx])
            embeddings[idx] = embedding

        embeddings = sklearn.preprocessing.normalize(embeddings)
        self.tpr, self.fpr, self.acc, self.val, self.std, self.far = evaluate(embeddings, ids, nrof_folds=10)
        self.acc, self.std = np.mean(self.acc), np.std(self.acc)

    def print_result(self):
        print("==================== Results ====================")
        print("Average Accuracy: {:.4f}".format(self.acc))
        print("=================================================")