File size: 6,654 Bytes
87cd14e a07f7bd 87cd14e a07f7bd 167c85e 87cd14e a07f7bd 87cd14e 556a873 87cd14e a07f7bd 87cd14e a07f7bd 87cd14e a07f7bd 87cd14e a07f7bd 87cd14e a07f7bd 87cd14e a07f7bd 87cd14e a07f7bd 87cd14e a07f7bd 87cd14e 1528081 a07f7bd 87cd14e a07f7bd 87cd14e a07f7bd 87cd14e a07f7bd 87cd14e a07f7bd 87cd14e a07f7bd 87cd14e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import numpy as np
import cv2 as cv
import argparse
# Check OpenCV version
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split("."))))
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \
"Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python"
from yolox import YoloX
# Valid combinations of backends and targets
backend_target_pairs = [
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
]
classes = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog',
'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe',
'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat',
'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop',
'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock',
'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush')
def letterbox(srcimg, target_size=(640, 640)):
padded_img = np.ones((target_size[0], target_size[1], 3)).astype(np.float32) * 114.0
ratio = min(target_size[0] / srcimg.shape[0], target_size[1] / srcimg.shape[1])
resized_img = cv.resize(
srcimg, (int(srcimg.shape[1] * ratio), int(srcimg.shape[0] * ratio)), interpolation=cv.INTER_LINEAR
).astype(np.float32)
padded_img[: int(srcimg.shape[0] * ratio), : int(srcimg.shape[1] * ratio)] = resized_img
return padded_img, ratio
def unletterbox(bbox, letterbox_scale):
return bbox / letterbox_scale
def vis(dets, srcimg, letterbox_scale, fps=None):
res_img = srcimg.copy()
if fps is not None:
fps_label = "FPS: %.2f" % fps
cv.putText(res_img, fps_label, (10, 25), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
for det in dets:
box = unletterbox(det[:4], letterbox_scale).astype(np.int32)
score = det[-2]
cls_id = int(det[-1])
x0, y0, x1, y1 = box
text = '{}:{:.1f}%'.format(classes[cls_id], score * 100)
font = cv.FONT_HERSHEY_SIMPLEX
txt_size = cv.getTextSize(text, font, 0.4, 1)[0]
cv.rectangle(res_img, (x0, y0), (x1, y1), (0, 255, 0), 2)
cv.rectangle(res_img, (x0, y0 + 1), (x0 + txt_size[0] + 1, y0 + int(1.5 * txt_size[1])), (255, 255, 255), -1)
cv.putText(res_img, text, (x0, y0 + txt_size[1]), font, 0.4, (0, 0, 0), thickness=1)
return res_img
if __name__=='__main__':
parser = argparse.ArgumentParser(description='Nanodet inference using OpenCV an contribution by Sri Siddarth Chakaravarthy part of GSOC_2022')
parser.add_argument('--input', '-i', type=str,
help='Path to the input image. Omit for using default camera.')
parser.add_argument('--model', '-m', type=str, default='object_detection_yolox_2022nov.onnx',
help="Path to the model")
parser.add_argument('--backend_target', '-bt', type=int, default=0,
help='''Choose one of the backend-target pair to run this demo:
{:d}: (default) OpenCV implementation + CPU,
{:d}: CUDA + GPU (CUDA),
{:d}: CUDA + GPU (CUDA FP16),
{:d}: TIM-VX + NPU,
{:d}: CANN + NPU
'''.format(*[x for x in range(len(backend_target_pairs))]))
parser.add_argument('--confidence', default=0.5, type=float,
help='Class confidence')
parser.add_argument('--nms', default=0.5, type=float,
help='Enter nms IOU threshold')
parser.add_argument('--obj', default=0.5, type=float,
help='Enter object threshold')
parser.add_argument('--save', '-s', action='store_true',
help='Specify to save results. This flag is invalid when using camera.')
parser.add_argument('--vis', '-v', action='store_true',
help='Specify to open a window for result visualization. This flag is invalid when using camera.')
args = parser.parse_args()
backend_id = backend_target_pairs[args.backend_target][0]
target_id = backend_target_pairs[args.backend_target][1]
model_net = YoloX(modelPath= args.model,
confThreshold=args.confidence,
nmsThreshold=args.nms,
objThreshold=args.obj,
backendId=backend_id,
targetId=target_id)
tm = cv.TickMeter()
tm.reset()
if args.input is not None:
image = cv.imread(args.input)
input_blob = cv.cvtColor(image, cv.COLOR_BGR2RGB)
input_blob, letterbox_scale = letterbox(input_blob)
# Inference
tm.start()
preds = model_net.infer(input_blob)
tm.stop()
print("Inference time: {:.2f} ms".format(tm.getTimeMilli()))
img = vis(preds, image, letterbox_scale)
if args.save:
print('Results saved to result.jpg\n')
cv.imwrite('result.jpg', img)
if args.vis:
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
cv.imshow(args.input, img)
cv.waitKey(0)
else:
print("Press any key to stop video capture")
deviceId = 0
cap = cv.VideoCapture(deviceId)
while cv.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
print('No frames grabbed!')
break
input_blob = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
input_blob, letterbox_scale = letterbox(input_blob)
# Inference
tm.start()
preds = model_net.infer(input_blob)
tm.stop()
img = vis(preds, frame, letterbox_scale, fps=tm.getFPS())
cv.imshow("YoloX Demo", img)
tm.reset()
|