File size: 9,463 Bytes
57699b7
 
 
 
 
 
 
 
 
 
50fc340
57699b7
 
 
3638017
 
57699b7
 
 
 
 
 
 
 
 
 
 
 
 
a07f7bd
d2b2b68
 
57699b7
 
 
3638017
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc71ef8
 
3638017
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57699b7
 
 
 
 
 
 
 
 
3638017
 
57699b7
3638017
57699b7
3638017
 
57699b7
3638017
57699b7
3638017
57699b7
3638017
 
 
 
57699b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3638017
 
 
57699b7
3638017
57699b7
 
 
3638017
57699b7
 
 
 
 
 
3638017
57699b7
 
3638017
50fc340
57699b7
50fc340
57699b7
 
 
50fc340
 
57699b7
 
 
 
3638017
50fc340
57699b7
 
 
50fc340
 
57699b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3638017
57699b7
 
 
50fc340
 
57699b7
 
 
 
 
 
 
 
 
 
 
 
50fc340
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import numpy as np
import cv2 as cv

class MPHandPose:
    def __init__(self, modelPath, confThreshold=0.8, backendId=0, targetId=0):
        self.model_path = modelPath
        self.conf_threshold = confThreshold
        self.backend_id = backendId
        self.target_id = targetId

        self.input_size = np.array([224, 224])  # wh
        self.PALM_LANDMARK_IDS = [0, 5, 9, 13, 17, 1, 2]
        self.PALM_LANDMARKS_INDEX_OF_PALM_BASE = 0
        self.PALM_LANDMARKS_INDEX_OF_MIDDLE_FINGER_BASE = 2
        self.PALM_BOX_PRE_SHIFT_VECTOR = [0, 0]
        self.PALM_BOX_PRE_ENLARGE_FACTOR = 4
        self.PALM_BOX_SHIFT_VECTOR = [0, -0.4]
        self.PALM_BOX_ENLARGE_FACTOR = 3
        self.HAND_BOX_SHIFT_VECTOR = [0, -0.1]
        self.HAND_BOX_ENLARGE_FACTOR = 1.65

        self.model = cv.dnn.readNet(self.model_path)
        self.model.setPreferableBackend(self.backend_id)
        self.model.setPreferableTarget(self.target_id)

    @property
    def name(self):
        return self.__class__.__name__

    def setBackendAndTarget(self, backendId, targetId):
        self.backend_id = backendId
        self.target_id = targetId
        self.model.setPreferableBackend(self.backend_id)
        self.model.setPreferableTarget(self.target_id)

    def _cropAndPadFromPalm(self, image, palm_bbox, for_rotation = False):
        # shift bounding box
        wh_palm_bbox = palm_bbox[1] - palm_bbox[0]
        if for_rotation:
            shift_vector = self.PALM_BOX_PRE_SHIFT_VECTOR
        else:
            shift_vector = self.PALM_BOX_SHIFT_VECTOR
        shift_vector = shift_vector * wh_palm_bbox
        palm_bbox = palm_bbox + shift_vector
        # enlarge bounding box
        center_palm_bbox = np.sum(palm_bbox, axis=0) / 2
        wh_palm_bbox = palm_bbox[1] - palm_bbox[0]
        if for_rotation:
            enlarge_scale = self.PALM_BOX_PRE_ENLARGE_FACTOR
        else:
            enlarge_scale = self.PALM_BOX_ENLARGE_FACTOR
        new_half_size = wh_palm_bbox * enlarge_scale / 2
        palm_bbox = np.array([
            center_palm_bbox - new_half_size,
            center_palm_bbox + new_half_size])
        palm_bbox = palm_bbox.astype(np.int32)
        palm_bbox[:, 0] = np.clip(palm_bbox[:, 0], 0, image.shape[1])
        palm_bbox[:, 1] = np.clip(palm_bbox[:, 1], 0, image.shape[0])
        # crop to the size of interest
        image = image[palm_bbox[0][1]:palm_bbox[1][1], palm_bbox[0][0]:palm_bbox[1][0], :]
        # pad to ensure conner pixels won't be cropped
        if for_rotation:
            side_len = np.linalg.norm(image.shape[:2])
        else:
            side_len = max(image.shape[:2])

        side_len = int(side_len)
        pad_h = side_len - image.shape[0]
        pad_w = side_len - image.shape[1]
        left = pad_w // 2
        top = pad_h // 2
        right = pad_w - left
        bottom = pad_h - top
        image = cv.copyMakeBorder(image, top, bottom, left, right, cv.BORDER_CONSTANT, None, (0, 0, 0))
        bias = palm_bbox[0] - [left, top]
        return image, palm_bbox, bias

    def _preprocess(self, image, palm):
        '''
        Rotate input for inference.
        Parameters:
          image - input image of BGR channel order
          palm_bbox - palm bounding box found in image of format [[x1, y1], [x2, y2]] (top-left and bottom-right points)
          palm_landmarks - 7 landmarks (5 finger base points, 2 palm base points) of shape [7, 2]
        Returns:
          rotated_hand - rotated hand image for inference
          rotate_palm_bbox - palm box of interest range
          angle - rotate angle for hand
          rotation_matrix - matrix for rotation and de-rotation
          pad_bias - pad pixels of interest range
        '''
        # crop and pad image to interest range
        pad_bias = np.array([0, 0], dtype=np.int32)  # left, top
        palm_bbox = palm[0:4].reshape(2, 2)
        image, palm_bbox, bias = self._cropAndPadFromPalm(image, palm_bbox, True)
        image = cv.cvtColor(image, cv.COLOR_BGR2RGB)
        pad_bias += bias

        # Rotate input to have vertically oriented hand image
        # compute rotation
        palm_bbox -= pad_bias
        palm_landmarks = palm[4:18].reshape(7, 2) - pad_bias
        p1 = palm_landmarks[self.PALM_LANDMARKS_INDEX_OF_PALM_BASE]
        p2 = palm_landmarks[self.PALM_LANDMARKS_INDEX_OF_MIDDLE_FINGER_BASE]
        radians = np.pi / 2 - np.arctan2(-(p2[1] - p1[1]), p2[0] - p1[0])
        radians = radians - 2 * np.pi * np.floor((radians + np.pi) / (2 * np.pi))
        angle = np.rad2deg(radians)
        #  get bbox center
        center_palm_bbox = np.sum(palm_bbox, axis=0) / 2
        #  get rotation matrix
        rotation_matrix = cv.getRotationMatrix2D(center_palm_bbox, angle, 1.0)
        #  get rotated image
        rotated_image = cv.warpAffine(image, rotation_matrix, (image.shape[1], image.shape[0]))
        #  get bounding boxes from rotated palm landmarks
        homogeneous_coord = np.c_[palm_landmarks, np.ones(palm_landmarks.shape[0])]
        rotated_palm_landmarks = np.array([
            np.dot(homogeneous_coord, rotation_matrix[0]),
            np.dot(homogeneous_coord, rotation_matrix[1])])
        #  get landmark bounding box
        rotated_palm_bbox = np.array([
            np.amin(rotated_palm_landmarks, axis=1),
            np.amax(rotated_palm_landmarks, axis=1)])  # [top-left, bottom-right]

        crop, rotated_palm_bbox, _ = self._cropAndPadFromPalm(rotated_image, rotated_palm_bbox)
        blob = cv.resize(crop, dsize=self.input_size, interpolation=cv.INTER_AREA).astype(np.float32)
        blob = blob / 255.

        return blob[np.newaxis, :, :, :], rotated_palm_bbox, angle, rotation_matrix, pad_bias

    def infer(self, image, palm):
        # Preprocess
        input_blob, rotated_palm_bbox, angle, rotation_matrix, pad_bias = self._preprocess(image, palm)

        # Forward
        self.model.setInput(input_blob)
        output_blob = self.model.forward(self.model.getUnconnectedOutLayersNames())

        # Postprocess
        results = self._postprocess(output_blob, rotated_palm_bbox, angle, rotation_matrix, pad_bias)
        return results # [bbox_coords, landmarks_coords, conf]

    def _postprocess(self, blob, rotated_palm_bbox, angle, rotation_matrix, pad_bias):
        landmarks, conf, handedness, landmarks_word = blob

        conf = conf[0][0]
        if conf < self.conf_threshold:
            return None

        landmarks = landmarks[0].reshape(-1, 3)  # shape: (1, 63) -> (21, 3)
        landmarks_word = landmarks_word[0].reshape(-1, 3) # shape: (1, 63) -> (21, 3)

        # transform coords back to the input coords
        wh_rotated_palm_bbox = rotated_palm_bbox[1] - rotated_palm_bbox[0]
        scale_factor = wh_rotated_palm_bbox / self.input_size
        landmarks[:, :2] = (landmarks[:, :2] - self.input_size / 2) * max(scale_factor)
        landmarks[:, 2] = landmarks[:, 2] * max(scale_factor) # depth scaling
        coords_rotation_matrix = cv.getRotationMatrix2D((0, 0), angle, 1.0)
        rotated_landmarks = np.dot(landmarks[:, :2], coords_rotation_matrix[:, :2])
        rotated_landmarks = np.c_[rotated_landmarks, landmarks[:, 2]]
        rotated_landmarks_world = np.dot(landmarks_word[:, :2], coords_rotation_matrix[:, :2])
        rotated_landmarks_world = np.c_[rotated_landmarks_world, landmarks_word[:, 2]]
        #  invert rotation
        rotation_component = np.array([
            [rotation_matrix[0][0], rotation_matrix[1][0]],
            [rotation_matrix[0][1], rotation_matrix[1][1]]])
        translation_component = np.array([
            rotation_matrix[0][2], rotation_matrix[1][2]])
        inverted_translation = np.array([
            -np.dot(rotation_component[0], translation_component),
            -np.dot(rotation_component[1], translation_component)])
        inverse_rotation_matrix = np.c_[rotation_component, inverted_translation]
        #  get box center
        center = np.append(np.sum(rotated_palm_bbox, axis=0) / 2, 1)
        original_center = np.array([
            np.dot(center, inverse_rotation_matrix[0]),
            np.dot(center, inverse_rotation_matrix[1])])
        landmarks[:, :2] = rotated_landmarks[:, :2] + original_center + pad_bias

        # get bounding box from rotated_landmarks
        bbox = np.array([
            np.amin(landmarks[:, :2], axis=0),
            np.amax(landmarks[:, :2], axis=0)])  # [top-left, bottom-right]
        # shift bounding box
        wh_bbox = bbox[1] - bbox[0]
        shift_vector = self.HAND_BOX_SHIFT_VECTOR * wh_bbox
        bbox = bbox + shift_vector
        # enlarge bounding box
        center_bbox = np.sum(bbox, axis=0) / 2
        wh_bbox = bbox[1] - bbox[0]
        new_half_size = wh_bbox * self.HAND_BOX_ENLARGE_FACTOR / 2
        bbox = np.array([
            center_bbox - new_half_size,
            center_bbox + new_half_size])

        # [0: 4]: hand bounding box found in image of format [x1, y1, x2, y2] (top-left and bottom-right points)
        # [4: 67]: screen landmarks with format [x1, y1, z1, x2, y2 ... x21, y21, z21], z value is relative to WRIST
        # [67: 130]: world landmarks with format [x1, y1, z1, x2, y2 ... x21, y21, z21], 3D metric x, y, z coordinate
        # [130]: handedness, (left)[0, 1](right) hand
        # [131]: confidence
        return np.r_[bbox.reshape(-1), landmarks.reshape(-1), rotated_landmarks_world.reshape(-1), handedness[0][0], conf]