File size: 5,326 Bytes
596a24b 167c85e 596a24b a07f7bd 596a24b a07f7bd 596a24b a07f7bd 41c69c8 596a24b a07f7bd 596a24b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import sys
import argparse
import copy
import datetime
import numpy as np
import cv2 as cv
# Check OpenCV version
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split("."))))
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \
"Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python"
from facial_fer_model import FacialExpressionRecog
sys.path.append('../face_detection_yunet')
from yunet import YuNet
# Valid combinations of backends and targets
backend_target_pairs = [
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
]
parser = argparse.ArgumentParser(description='Facial Expression Recognition')
parser.add_argument('--input', '-i', type=str,
help='Path to the input image. Omit for using default camera.')
parser.add_argument('--model', '-m', type=str, default='./facial_expression_recognition_mobilefacenet_2022july.onnx',
help='Path to the facial expression recognition model.')
parser.add_argument('--backend_target', '-bt', type=int, default=0,
help='''Choose one of the backend-target pair to run this demo:
{:d}: (default) OpenCV implementation + CPU,
{:d}: CUDA + GPU (CUDA),
{:d}: CUDA + GPU (CUDA FP16),
{:d}: TIM-VX + NPU,
{:d}: CANN + NPU
'''.format(*[x for x in range(len(backend_target_pairs))]))
parser.add_argument('--save', '-s', action='store_true',
help='Specify to save results. This flag is invalid when using camera.')
parser.add_argument('--vis', '-v', action='store_true',
help='Specify to open a window for result visualization. This flag is invalid when using camera.')
args = parser.parse_args()
def visualize(image, det_res, fer_res, box_color=(0, 255, 0), text_color=(0, 0, 255)):
print('%s %3d faces detected.' % (datetime.datetime.now(), len(det_res)))
output = image.copy()
landmark_color = [
(255, 0, 0), # right eye
(0, 0, 255), # left eye
(0, 255, 0), # nose tip
(255, 0, 255), # right mouth corner
(0, 255, 255) # left mouth corner
]
for ind, (det, fer_type) in enumerate(zip(det_res, fer_res)):
bbox = det[0:4].astype(np.int32)
fer_type = FacialExpressionRecog.getDesc(fer_type)
print("Face %2d: %d %d %d %d %s." % (ind, bbox[0], bbox[1], bbox[0]+bbox[2], bbox[1]+bbox[3], fer_type))
cv.rectangle(output, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), box_color, 2)
cv.putText(output, fer_type, (bbox[0], bbox[1]+12), cv.FONT_HERSHEY_DUPLEX, 0.5, text_color)
landmarks = det[4:14].astype(np.int32).reshape((5, 2))
for idx, landmark in enumerate(landmarks):
cv.circle(output, landmark, 2, landmark_color[idx], 2)
return output
def process(detect_model, fer_model, frame):
h, w, _ = frame.shape
detect_model.setInputSize([w, h])
dets = detect_model.infer(frame)
if dets is None:
return False, None, None
fer_res = np.zeros(0, dtype=np.int8)
for face_points in dets:
fer_res = np.concatenate((fer_res, fer_model.infer(frame, face_points[:-1])), axis=0)
return True, dets, fer_res
if __name__ == '__main__':
backend_id = backend_target_pairs[args.backend_target][0]
target_id = backend_target_pairs[args.backend_target][1]
detect_model = YuNet(modelPath='../face_detection_yunet/face_detection_yunet_2023mar.onnx')
fer_model = FacialExpressionRecog(modelPath=args.model,
backendId=backend_id,
targetId=target_id)
# If input is an image
if args.input is not None:
image = cv.imread(args.input)
# Get detection and fer results
status, dets, fer_res = process(detect_model, fer_model, image)
if status:
# Draw results on the input image
image = visualize(image, dets, fer_res)
# Save results
if args.save:
cv.imwrite('result.jpg', image)
print('Results saved to result.jpg\n')
# Visualize results in a new window
if args.vis:
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
cv.imshow(args.input, image)
cv.waitKey(0)
else: # Omit input to call default camera
deviceId = 0
cap = cv.VideoCapture(deviceId)
while cv.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
print('No frames grabbed!')
break
# Get detection and fer results
status, dets, fer_res = process(detect_model, fer_model, frame)
if status:
# Draw results on the input image
frame = visualize(frame, dets, fer_res)
# Visualize results in a new window
cv.imshow('FER Demo', frame)
|