|
import copy |
|
import warnings |
|
from dataclasses import asdict, dataclass |
|
from typing import Callable, List, Optional |
|
|
|
import streamlit as st |
|
import torch |
|
from torch import nn |
|
from transformers.generation.utils import (LogitsProcessorList, |
|
StoppingCriteriaList) |
|
from transformers.utils import logging |
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig |
|
from peft import PeftModel |
|
|
|
logger = logging.get_logger(__name__) |
|
st.set_page_config(page_title="Wukong-chat") |
|
|
|
import argparse |
|
|
|
@dataclass |
|
class GenerationConfig: |
|
max_length: int = 8192 |
|
max_new_tokens: int = 600 |
|
top_p: float = 0.8 |
|
temperature: float = 0.8 |
|
do_sample: bool = True |
|
repetition_penalty: float = 1.05 |
|
|
|
@torch.inference_mode() |
|
def generate_interactive( |
|
model, |
|
tokenizer, |
|
prompt, |
|
generation_config: Optional[GenerationConfig] = None, |
|
logits_processor: Optional[LogitsProcessorList] = None, |
|
stopping_criteria: Optional[StoppingCriteriaList] = None, |
|
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], |
|
List[int]]] = None, |
|
additional_eos_token_id: Optional[int] = None, |
|
**kwargs, |
|
): |
|
inputs = tokenizer([prompt], return_tensors='pt') |
|
input_length = len(inputs['input_ids'][0]) |
|
for k, v in inputs.items(): |
|
inputs[k] = v.cuda() |
|
input_ids = inputs['input_ids'] |
|
_, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1] |
|
if generation_config is None: |
|
generation_config = model.generation_config |
|
generation_config = copy.deepcopy(generation_config) |
|
model_kwargs = generation_config.update(**kwargs) |
|
bos_token_id, eos_token_id = ( |
|
generation_config.bos_token_id, |
|
generation_config.eos_token_id, |
|
) |
|
if isinstance(eos_token_id, int): |
|
eos_token_id = [eos_token_id] |
|
if additional_eos_token_id is not None: |
|
eos_token_id.append(additional_eos_token_id) |
|
has_default_max_length = kwargs.get( |
|
'max_length') is None and generation_config.max_length is not None |
|
if has_default_max_length and generation_config.max_new_tokens is None: |
|
warnings.warn( |
|
f"Using 'max_length''s default ({repr(generation_config.max_length)}) \ |
|
to control the generation length. " |
|
'This behaviour is deprecated and will be removed from the \ |
|
config in v5 of Transformers -- we' |
|
' recommend using `max_new_tokens` to control the maximum \ |
|
length of the generation.', |
|
UserWarning, |
|
) |
|
elif generation_config.max_new_tokens is not None: |
|
generation_config.max_length = generation_config.max_new_tokens + \ |
|
input_ids_seq_length |
|
if not has_default_max_length: |
|
logger.warn( |
|
f"Both 'max_new_tokens' (={generation_config.max_new_tokens}) " |
|
f"and 'max_length'(={generation_config.max_length}) seem to " |
|
"have been set. 'max_new_tokens' will take precedence. " |
|
'Please refer to the documentation for more information. ' |
|
'(https://huggingface.co/docs/transformers/main/' |
|
'en/main_classes/text_generation)', |
|
UserWarning, |
|
) |
|
|
|
if input_ids_seq_length >= generation_config.max_length: |
|
input_ids_string = 'input_ids' |
|
logger.warning( |
|
f"Input length of {input_ids_string} is {input_ids_seq_length}, " |
|
f"but 'max_length' is set to {generation_config.max_length}. " |
|
'This can lead to unexpected behavior. You should consider' |
|
" increasing 'max_new_tokens'.") |
|
|
|
|
|
logits_processor = logits_processor if logits_processor is not None \ |
|
else LogitsProcessorList() |
|
stopping_criteria = stopping_criteria if stopping_criteria is not None \ |
|
else StoppingCriteriaList() |
|
|
|
logits_processor = model._get_logits_processor( |
|
generation_config=generation_config, |
|
input_ids_seq_length=input_ids_seq_length, |
|
encoder_input_ids=input_ids, |
|
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, |
|
logits_processor=logits_processor, |
|
) |
|
|
|
stopping_criteria = model._get_stopping_criteria( |
|
generation_config=generation_config, |
|
stopping_criteria=stopping_criteria) |
|
logits_warper = model._get_logits_warper(generation_config) |
|
|
|
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1) |
|
scores = None |
|
while True: |
|
model_inputs = model.prepare_inputs_for_generation( |
|
input_ids, **model_kwargs) |
|
|
|
outputs = model( |
|
**model_inputs, |
|
return_dict=True, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
) |
|
|
|
next_token_logits = outputs.logits[:, -1, :] |
|
|
|
|
|
next_token_scores = logits_processor(input_ids, next_token_logits) |
|
next_token_scores = logits_warper(input_ids, next_token_scores) |
|
|
|
|
|
probs = nn.functional.softmax(next_token_scores, dim=-1) |
|
if generation_config.do_sample: |
|
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) |
|
else: |
|
next_tokens = torch.argmax(probs, dim=-1) |
|
|
|
|
|
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) |
|
model_kwargs = model._update_model_kwargs_for_generation( |
|
outputs, model_kwargs, is_encoder_decoder=False) |
|
unfinished_sequences = unfinished_sequences.mul( |
|
(min(next_tokens != i for i in eos_token_id)).long()) |
|
|
|
output_token_ids = input_ids[0].cpu().tolist() |
|
output_token_ids = output_token_ids[input_length:] |
|
for each_eos_token_id in eos_token_id: |
|
if output_token_ids[-1] == each_eos_token_id: |
|
output_token_ids = output_token_ids[:-1] |
|
response = tokenizer.decode(output_token_ids, skip_special_tokens=True) |
|
|
|
yield response |
|
|
|
|
|
if unfinished_sequences.max() == 0 or stopping_criteria( |
|
input_ids, scores): |
|
break |
|
|
|
|
|
def on_btn_click(): |
|
del st.session_state.messages |
|
|
|
|
|
@st.cache_resource |
|
def load_model(model_name_or_path, adapter_name_or_path=None, load_in_4bit=False): |
|
if load_in_4bit: |
|
quantization_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.float16, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
llm_int8_threshold=6.0, |
|
llm_int8_has_fp16_weight=False, |
|
) |
|
else: |
|
quantization_config = None |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name_or_path, |
|
load_in_4bit=load_in_4bit, |
|
trust_remote_code=True, |
|
low_cpu_mem_usage=True, |
|
torch_dtype=torch.float16, |
|
device_map='auto', |
|
quantization_config=quantization_config |
|
) |
|
if adapter_name_or_path is not None: |
|
model = PeftModel.from_pretrained(model, adapter_name_or_path) |
|
model.eval() |
|
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True) |
|
|
|
return model, tokenizer |
|
|
|
|
|
def prepare_generation_config(): |
|
with st.sidebar: |
|
st.title('超参数面板') |
|
|
|
system_prompt_content = st.text_area('系统提示词', |
|
'''You are a creative super artificial intelligence assistant, possessing all the knowledge of humankind. Your name is csg-wukong, developed by OpenCSG. You need to understand and infer the true intentions of users based on the topics discussed in the chat history, and respond to user questions correctly as required. You enjoy responding to users with accurate and insightful answers. Please pay attention to the appropriate style and format when replying, try to avoid repetitive words and sentences, and keep your responses as concise and profound as possible. You carefully consider the context of the discussion when replying to users. When the user says "continue," please proceed with the continuation of the previous assistant's response.''', |
|
height=200, |
|
key='system_prompt_content' |
|
) |
|
max_new_tokens = st.slider('最大回复长度', 100, 8192, 660, step=8) |
|
top_p = st.slider('Top P', 0.0, 1.0, 0.8, step=0.01) |
|
temperature = st.slider('温度系数', 0.0, 1.0, 0.7, step=0.01) |
|
repetition_penalty = st.slider("重复惩罚系数", 1.0, 2.0, 1.07, step=0.01) |
|
st.button('重置聊天', on_click=on_btn_click) |
|
|
|
generation_config = GenerationConfig(max_new_tokens=max_new_tokens, |
|
top_p=top_p, |
|
temperature=temperature, |
|
repetition_penalty=repetition_penalty, |
|
) |
|
|
|
return generation_config |
|
|
|
system_prompt = '<|system|>\n{content}</s>' |
|
user_prompt = '<|user|>\n{content}</s>\n' |
|
robot_prompt = '<|assistant|>\n{content}</s>\n' |
|
cur_query_prompt = '<|user|>\n{content}</s>\n<|assistant|>\n' |
|
|
|
|
|
def combine_history(prompt): |
|
messages = st.session_state.messages |
|
total_prompt = '' |
|
for message in messages: |
|
cur_content = message['content'] |
|
if message['role'] == 'user': |
|
cur_prompt = user_prompt.format(content=cur_content) |
|
elif message['role'] == 'robot': |
|
cur_prompt = robot_prompt.format(content=cur_content) |
|
else: |
|
raise RuntimeError |
|
total_prompt += cur_prompt |
|
|
|
system_prompt_content = st.session_state.system_prompt_content |
|
system = system_prompt.format(content=system_prompt_content) |
|
total_prompt = system + total_prompt + cur_query_prompt.format(content=prompt) |
|
|
|
return total_prompt |
|
|
|
|
|
def main(model_name_or_path, adapter_name_or_path): |
|
|
|
print('load model...') |
|
model, tokenizer = load_model(model_name_or_path, adapter_name_or_path=adapter_name_or_path, load_in_4bit=False) |
|
print('load model end.') |
|
|
|
st.title('Wukong-chat') |
|
|
|
generation_config = prepare_generation_config() |
|
|
|
|
|
if 'messages' not in st.session_state: |
|
st.session_state.messages = [] |
|
|
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message['role']): |
|
st.markdown(message['content']) |
|
|
|
|
|
if prompt := st.chat_input('hello'): |
|
|
|
with st.chat_message('user'): |
|
st.markdown(prompt) |
|
real_prompt = combine_history(prompt) |
|
|
|
st.session_state.messages.append({ |
|
'role': 'user', |
|
'content': prompt, |
|
}) |
|
|
|
with st.chat_message('robot'): |
|
message_placeholder = st.empty() |
|
for cur_response in generate_interactive( |
|
model=model, |
|
tokenizer=tokenizer, |
|
prompt=real_prompt, |
|
additional_eos_token_id=128009, |
|
**asdict(generation_config), |
|
): |
|
|
|
message_placeholder.markdown(cur_response + '▌') |
|
message_placeholder.markdown(cur_response) |
|
|
|
st.session_state.messages.append({ |
|
'role': 'robot', |
|
'content': cur_response, |
|
}) |
|
torch.cuda.empty_cache() |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
import sys |
|
model_name_or_path = sys.argv[1] |
|
if len(sys.argv) >= 3: |
|
adapter_name_or_path = sys.argv[2] |
|
else: |
|
adapter_name_or_path = None |
|
main(model_name_or_path, adapter_name_or_path) |