File size: 24,257 Bytes
aa60bbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
import cv2
import numpy as np
import torch
from timm.data.constants import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from timm.data.transforms import RandomResizedCropAndInterpolation
from torchvision import transforms
import urllib
from tqdm import tqdm
from cpm_live.tokenizers import CPMBeeTokenizer
from torch.utils.data import default_collate
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from typing_extensions import TypedDict
from numpy.typing import NDArray
import importlib.machinery
import importlib.util
import types
import random


CPMBeeInputType = Union[str, Dict[str, "CPMBeeInputType"]]


def pad(orig_items, key, max_length=None, padding_value=0, padding_side="left"):
    items = []
    if isinstance(orig_items[0][key], list):
        assert isinstance(orig_items[0][key][0], torch.Tensor)
        for it in orig_items:
            for tr in it[key]:
                items.append({key: tr})
    else:
        assert isinstance(orig_items[0][key], torch.Tensor)
        items = orig_items

    batch_size = len(items)
    shape = items[0][key].shape
    dim = len(shape)
    assert dim <= 3
    if max_length is None:
        max_length = 0
    max_length = max(max_length, max(item[key].shape[-1] for item in items))
    min_length = min(item[key].shape[-1] for item in items)
    dtype = items[0][key].dtype

    if dim == 1:
        return torch.cat([item[key] for item in items], dim=0)
    elif dim == 2:
        if max_length == min_length:
            return torch.cat([item[key] for item in items], dim=0)
        tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
    else:
        tensor = torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype) + padding_value

    for i, item in enumerate(items):
        if dim == 2:
            if padding_side == "left":
                tensor[i, -len(item[key][0]):] = item[key][0].clone()
            else:
                tensor[i, : len(item[key][0])] = item[key][0].clone()
        elif dim == 3:
            if padding_side == "left":
                tensor[i, -len(item[key][0]):, :] = item[key][0].clone()
            else:
                tensor[i, : len(item[key][0]), :] = item[key][0].clone()

    return tensor


class CPMBeeCollater:
    """
    针对 cpmbee 输入数据 collate, 对应 cpm-live 的 _MixedDatasetBatchPacker
    目前利用 torch 的原生 Dataloader 不太适合改造 in-context-learning
    并且原来实现为了最大化提高有效 token 比比例, 会有一个 best_fit 操作, 这个目前也不支持
    todo: @wangchongyi 重写一下 Dataloader or BatchPacker
    """

    def __init__(self, tokenizer: CPMBeeTokenizer, max_len):
        self.tokenizer = tokenizer
        self._max_length = max_len
        self.pad_keys = ['input_ids', 'input_id_subs', 'context', 'segment_ids', 'segment_rel_offset',
                         'segment_rel', 'sample_ids', 'num_segments']

    def __call__(self, batch):
        batch_size = len(batch)

        tgt = np.full((batch_size, self._max_length), -100, dtype=np.int32)
        # 目前没有 best_fit, span 为全 0
        span = np.zeros((batch_size, self._max_length), dtype=np.int32)
        length = np.zeros((batch_size,), dtype=np.int32)

        batch_ext_table_map: Dict[Tuple[int, int], int] = {}
        batch_ext_table_ids: List[int] = []
        batch_ext_table_sub: List[int] = []
        raw_data_list: List[Any] = []

        for i in range(batch_size):
            instance_length = batch[i]['input_ids'][0].shape[0]
            length[i] = instance_length
            raw_data_list.extend(batch[i]['raw_data'])

            for j in range(instance_length):
                idx, idx_sub = batch[i]['input_ids'][0, j], batch[i]['input_id_subs'][0, j]
                tgt_idx = idx
                if idx_sub > 0:
                    # need to be in ext table
                    if (idx, idx_sub) not in batch_ext_table_map:
                        batch_ext_table_map[(idx, idx_sub)] = len(batch_ext_table_map)
                        batch_ext_table_ids.append(idx)
                        batch_ext_table_sub.append(idx_sub)
                    tgt_idx = batch_ext_table_map[(idx, idx_sub)] + self.tokenizer.vocab_size
                if j > 1 and batch[i]['context'][0, j - 1] == 0:
                    if idx != self.tokenizer.bos_id:
                        tgt[i, j - 1] = tgt_idx
                    else:
                        tgt[i, j - 1] = self.tokenizer.eos_id
            if batch[i]['context'][0, instance_length - 1] == 0:
                tgt[i, instance_length - 1] = self.tokenizer.eos_id

        if len(batch_ext_table_map) == 0:
            # placeholder
            batch_ext_table_ids.append(0)
            batch_ext_table_sub.append(1)

        # image
        if 'pixel_values' in batch[0]:
            data = {'pixel_values': default_collate([i['pixel_values'] for i in batch])}
        else:
            data = {}

        # image_bound
        if 'image_bound' in batch[0]:
            data['image_bound'] = default_collate([i['image_bound'] for i in batch])

        # bee inp
        for key in self.pad_keys:
            data[key] = pad(batch, key, max_length=self._max_length, padding_value=0, padding_side='right')

        data['context'] = data['context'] > 0
        data['length'] = torch.from_numpy(length)
        data['span'] = torch.from_numpy(span)
        data['target'] = torch.from_numpy(tgt)
        data['ext_table_ids'] = torch.from_numpy(np.array(batch_ext_table_ids))
        data['ext_table_sub'] = torch.from_numpy(np.array(batch_ext_table_sub))
        data['raw_data'] = raw_data_list

        return data


class _DictTree(TypedDict):
    value: str
    children: List["_DictTree"]
    depth: int
    segment_id: int
    need_predict: bool
    is_image: bool


class _PrevExtTableStates(TypedDict):
    ext_table: Dict[int, str]
    token_id_table: Dict[str, Dict[int, int]]


class _TransformFuncDict(TypedDict):
    loader: importlib.machinery.SourceFileLoader
    module: types.ModuleType
    last_m: float


_TransformFunction = Callable[[CPMBeeInputType, int, random.Random], CPMBeeInputType]


class CPMBeeBatch(TypedDict):
    inputs: NDArray[np.int32]
    inputs_sub: NDArray[np.int32]
    length: NDArray[np.int32]
    context: NDArray[np.bool_]
    sample_ids: NDArray[np.int32]
    num_segments: NDArray[np.int32]
    segment_ids: NDArray[np.int32]
    segment_rel_offset: NDArray[np.int32]
    segment_rel: NDArray[np.int32]
    spans: NDArray[np.int32]
    target: NDArray[np.int32]
    ext_ids: NDArray[np.int32]
    ext_sub: NDArray[np.int32]
    task_ids: NDArray[np.int32]
    task_names: List[str]
    raw_data: List[Any]


def rel_to_bucket(n_up: int, n_down: int, max_depth: int = 8):
    ret = n_up * max_depth + n_down
    if ret == 0:
        return ret
    else:
        # bucket 1 is reserved for incontext samples
        return ret + 1


def convert_data_to_id(
    tokenizer: CPMBeeTokenizer,
    data: Any,
    prev_ext_states: Optional[_PrevExtTableStates] = None,
    shuffle_answer: bool = True,
    max_depth: int = 8
):
    root: _DictTree = {
        "value": "<root>",
        "children": [],
        "depth": 0,
        "segment_id": 0,
        "need_predict": False,
        "is_image": False
    }

    segments = [root]

    def _build_dict_tree(data: CPMBeeInputType, depth: int, need_predict: bool, is_image: bool) -> List[_DictTree]:
        if isinstance(data, dict):
            ret_list: List[_DictTree] = []
            curr_items = list(data.items())
            if need_predict and shuffle_answer:
                access_idx = np.arange(len(curr_items))
                np.random.shuffle(access_idx)
                curr_items = [curr_items[idx] for idx in access_idx]
            for k, v in curr_items:
                child_info: _DictTree = {
                    "value": k,
                    "children": [],
                    "depth": depth,
                    "segment_id": len(segments),
                    "need_predict": False,  # only leaves are contexts
                    "is_image": False,
                }
                segments.append(child_info)
                child_info["children"] = _build_dict_tree(
                    v, depth + 1,
                    need_predict=need_predict or (depth == 1 and k == "<ans>"),
                    is_image=is_image or (depth == 1 and k == "image")
                )  # elements in <root>.<ans>

                ret_list.append(child_info)
            return ret_list
        else:
            assert isinstance(data, str), "Invalid data {}".format(data)
            ret: _DictTree = {
                "value": data,
                "children": [],
                "depth": depth,
                "segment_id": len(segments),
                "need_predict": need_predict,
                "is_image": is_image,
            }
            segments.append(ret)
            return [ret]

    root["children"] = _build_dict_tree(data, 1, False, False)

    num_segments = len(segments)
    segment_rel = np.zeros((num_segments * num_segments,), dtype=np.int32)

    def _build_segment_rel(node: _DictTree) -> List[Tuple[int, int]]:
        ret: List[Tuple[int, int]] = [(node["segment_id"], node["depth"])]
        for child in node["children"]:
            sub = _build_segment_rel(child)
            for seg_id_1, depth_1 in sub:
                for seg_id_2, depth_2 in ret:
                    n_up = min(depth_1 - node["depth"], max_depth - 1)
                    n_down = min(depth_2 - node["depth"], max_depth - 1)
                    segment_rel[seg_id_1 * num_segments + seg_id_2] = rel_to_bucket(
                        n_up, n_down, max_depth=max_depth
                    )
                    segment_rel[seg_id_2 * num_segments + seg_id_1] = rel_to_bucket(
                        n_down, n_up, max_depth=max_depth
                    )
            ret.extend(sub)
        return ret

    _build_segment_rel(root)

    input_ids: List[int] = []
    input_id_subs: List[int] = []
    segment_bound: List[Tuple[int, int]] = []
    image_bound: List[Tuple[int, int]] = []

    ext_table: Dict[int, str] = {}
    token_id_table: Dict[str, Dict[int, int]] = {}

    if prev_ext_states is not None:
        ext_table = prev_ext_states["ext_table"]
        token_id_table = prev_ext_states["token_id_table"]

    for seg in segments:
        tokens, ext_table = tokenizer.encode(seg["value"], ext_table)

        token_id_subs = []
        reid_token_ids = []
        for idx in tokens:
            if idx in ext_table:
                # unk or special token
                token = ext_table[idx]
                if token.startswith("<") and token.endswith(">"):
                    # special token
                    if "_" in token:
                        token_name = token[1:-1].split("_", maxsplit=1)[0]
                    else:
                        token_name = token[1:-1]
                    token_name = "<{}>".format(token_name)
                else:
                    token_name = "<unk>"

                if token_name not in token_id_table:
                    token_id_table[token_name] = {}
                if idx not in token_id_table[token_name]:
                    token_id_table[token_name][idx] = len(token_id_table[token_name])
                if token_name not in tokenizer.encoder:
                    raise ValueError("Invalid token {}".format(token))
                reid_token_ids.append(tokenizer.encoder[token_name])
                token_id_subs.append(token_id_table[token_name][idx])
            else:
                reid_token_ids.append(idx)
                token_id_subs.append(0)
        tokens = [tokenizer.bos_id] + reid_token_ids
        token_id_subs = [0] + token_id_subs
        if not seg["need_predict"]:
            tokens = tokens + [tokenizer.eos_id]
            token_id_subs = token_id_subs + [0]
        else:
            # no eos
            pass
        begin = len(input_ids)
        input_ids.extend(tokens)
        input_id_subs.extend(token_id_subs)
        end = len(input_ids)
        segment_bound.append((begin, end))

    ids = np.array(input_ids, dtype=np.int32)
    id_subs = np.array(input_id_subs, dtype=np.int32)
    segs = np.zeros((ids.shape[0],), dtype=np.int32)
    context = np.zeros((ids.shape[0],), dtype=np.int8)
    for i, (begin, end) in enumerate(segment_bound):
        if not segments[i]["need_predict"]:
            context[begin:end] = 1
        if segments[i]["is_image"]:
            image_bound.append((begin+1, end-1))
        segs[begin:end] = i

    curr_ext_table_states: _PrevExtTableStates = {
        "ext_table": ext_table,
        "token_id_table": token_id_table,
    }
    image_bound = np.array(image_bound, dtype=np.int32)
    return ids, id_subs, context, segs, segment_rel, num_segments, curr_ext_table_states, image_bound


# aug functions
def identity_func(img):
    return img


def autocontrast_func(img, cutoff=0):
    '''
        same output as PIL.ImageOps.autocontrast
    '''
    n_bins = 256

    def tune_channel(ch):
        n = ch.size
        cut = cutoff * n // 100
        if cut == 0:
            high, low = ch.max(), ch.min()
        else:
            hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins])
            low = np.argwhere(np.cumsum(hist) > cut)
            low = 0 if low.shape[0] == 0 else low[0]
            high = np.argwhere(np.cumsum(hist[::-1]) > cut)
            high = n_bins - 1 if high.shape[0] == 0 else n_bins - 1 - high[0]
        if high <= low:
            table = np.arange(n_bins)
        else:
            scale = (n_bins - 1) / (high - low)
            table = np.arange(n_bins) * scale - low * scale
            table[table < 0] = 0
            table[table > n_bins - 1] = n_bins - 1
        table = table.clip(0, 255).astype(np.uint8)
        return table[ch]

    channels = [tune_channel(ch) for ch in cv2.split(img)]
    out = cv2.merge(channels)
    return out


def equalize_func(img):
    '''
        same output as PIL.ImageOps.equalize
        PIL's implementation is different from cv2.equalize
    '''
    n_bins = 256

    def tune_channel(ch):
        hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins])
        non_zero_hist = hist[hist != 0].reshape(-1)
        step = np.sum(non_zero_hist[:-1]) // (n_bins - 1)
        if step == 0:
            return ch
        n = np.empty_like(hist)
        n[0] = step // 2
        n[1:] = hist[:-1]
        table = (np.cumsum(n) // step).clip(0, 255).astype(np.uint8)
        return table[ch]

    channels = [tune_channel(ch) for ch in cv2.split(img)]
    out = cv2.merge(channels)
    return out


def rotate_func(img, degree, fill=(0, 0, 0)):
    '''
    like PIL, rotate by degree, not radians
    '''
    H, W = img.shape[0], img.shape[1]
    center = W / 2, H / 2
    M = cv2.getRotationMatrix2D(center, degree, 1)
    out = cv2.warpAffine(img, M, (W, H), borderValue=fill)
    return out


def solarize_func(img, thresh=128):
    '''
        same output as PIL.ImageOps.posterize
    '''
    table = np.array([el if el < thresh else 255 - el for el in range(256)])
    table = table.clip(0, 255).astype(np.uint8)
    out = table[img]
    return out


def color_func(img, factor):
    '''
        same output as PIL.ImageEnhance.Color
    '''
    # implementation according to PIL definition, quite slow
    #  degenerate = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[:, :, np.newaxis]
    #  out = blend(degenerate, img, factor)
    #  M = (
    #      np.eye(3) * factor
    #      + np.float32([0.114, 0.587, 0.299]).reshape(3, 1) * (1. - factor)
    #  )[np.newaxis, np.newaxis, :]
    M = (
        np.float32([
            [0.886, -0.114, -0.114],
            [-0.587, 0.413, -0.587],
            [-0.299, -0.299, 0.701]]) * factor
        + np.float32([[0.114], [0.587], [0.299]])
    )
    out = np.matmul(img, M).clip(0, 255).astype(np.uint8)
    return out


def contrast_func(img, factor):
    """
        same output as PIL.ImageEnhance.Contrast
    """
    mean = np.sum(np.mean(img, axis=(0, 1)) * np.array([0.114, 0.587, 0.299]))
    table = np.array([(
        el - mean) * factor + mean
        for el in range(256)
    ]).clip(0, 255).astype(np.uint8)
    out = table[img]
    return out


def brightness_func(img, factor):
    '''
        same output as PIL.ImageEnhance.Contrast
    '''
    table = (np.arange(256, dtype=np.float32) * factor).clip(0, 255).astype(np.uint8)
    out = table[img]
    return out


def sharpness_func(img, factor):
    '''
    The differences the this result and PIL are all on the 4 boundaries, the center
    areas are same
    '''
    kernel = np.ones((3, 3), dtype=np.float32)
    kernel[1][1] = 5
    kernel /= 13
    degenerate = cv2.filter2D(img, -1, kernel)
    if factor == 0.0:
        out = degenerate
    elif factor == 1.0:
        out = img
    else:
        out = img.astype(np.float32)
        degenerate = degenerate.astype(np.float32)[1:-1, 1:-1, :]
        out[1:-1, 1:-1, :] = degenerate + factor * (out[1:-1, 1:-1, :] - degenerate)
        out = out.astype(np.uint8)
    return out


def shear_x_func(img, factor, fill=(0, 0, 0)):
    H, W = img.shape[0], img.shape[1]
    M = np.float32([[1, factor, 0], [0, 1, 0]])
    out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
    return out


def translate_x_func(img, offset, fill=(0, 0, 0)):
    '''
        same output as PIL.Image.transform
    '''
    H, W = img.shape[0], img.shape[1]
    M = np.float32([[1, 0, -offset], [0, 1, 0]])
    out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
    return out


def translate_y_func(img, offset, fill=(0, 0, 0)):
    '''
        same output as PIL.Image.transform
    '''
    H, W = img.shape[0], img.shape[1]
    M = np.float32([[1, 0, 0], [0, 1, -offset]])
    out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
    return out


def posterize_func(img, bits):
    '''
        same output as PIL.ImageOps.posterize
    '''
    out = np.bitwise_and(img, np.uint8(255 << (8 - bits)))
    return out


def shear_y_func(img, factor, fill=(0, 0, 0)):
    H, W = img.shape[0], img.shape[1]
    M = np.float32([[1, 0, 0], [factor, 1, 0]])
    out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
    return out


def cutout_func(img, pad_size, replace=(0, 0, 0)):
    replace = np.array(replace, dtype=np.uint8)
    H, W = img.shape[0], img.shape[1]
    rh, rw = np.random.random(2)
    pad_size = pad_size // 2
    ch, cw = int(rh * H), int(rw * W)
    x1, x2 = max(ch - pad_size, 0), min(ch + pad_size, H)
    y1, y2 = max(cw - pad_size, 0), min(cw + pad_size, W)
    out = img.copy()
    out[x1:x2, y1:y2, :] = replace
    return out


# level to args
def enhance_level_to_args(MAX_LEVEL):
    def level_to_args(level):
        return ((level / MAX_LEVEL) * 1.8 + 0.1,)
    return level_to_args


def shear_level_to_args(MAX_LEVEL, replace_value):
    def level_to_args(level):
        level = (level / MAX_LEVEL) * 0.3
        if np.random.random() > 0.5:
            level = -level
        return (level, replace_value)

    return level_to_args


def translate_level_to_args(translate_const, MAX_LEVEL, replace_value):
    def level_to_args(level):
        level = (level / MAX_LEVEL) * float(translate_const)
        if np.random.random() > 0.5:
            level = -level
        return (level, replace_value)

    return level_to_args


def cutout_level_to_args(cutout_const, MAX_LEVEL, replace_value):
    def level_to_args(level):
        level = int((level / MAX_LEVEL) * cutout_const)
        return (level, replace_value)

    return level_to_args


def solarize_level_to_args(MAX_LEVEL):
    def level_to_args(level):
        level = int((level / MAX_LEVEL) * 256)
        return (level, )
    return level_to_args


def none_level_to_args(level):
    return ()


def posterize_level_to_args(MAX_LEVEL):
    def level_to_args(level):
        level = int((level / MAX_LEVEL) * 4)
        return (level, )
    return level_to_args


def rotate_level_to_args(MAX_LEVEL, replace_value):
    def level_to_args(level):
        level = (level / MAX_LEVEL) * 30
        if np.random.random() < 0.5:
            level = -level
        return (level, replace_value)

    return level_to_args


func_dict = {
    'Identity': identity_func,
    'AutoContrast': autocontrast_func,
    'Equalize': equalize_func,
    'Rotate': rotate_func,
    'Solarize': solarize_func,
    'Color': color_func,
    'Contrast': contrast_func,
    'Brightness': brightness_func,
    'Sharpness': sharpness_func,
    'ShearX': shear_x_func,
    'TranslateX': translate_x_func,
    'TranslateY': translate_y_func,
    'Posterize': posterize_func,
    'ShearY': shear_y_func,
}

translate_const = 10
MAX_LEVEL = 10
replace_value = (128, 128, 128)
arg_dict = {
    'Identity': none_level_to_args,
    'AutoContrast': none_level_to_args,
    'Equalize': none_level_to_args,
    'Rotate': rotate_level_to_args(MAX_LEVEL, replace_value),
    'Solarize': solarize_level_to_args(MAX_LEVEL),
    'Color': enhance_level_to_args(MAX_LEVEL),
    'Contrast': enhance_level_to_args(MAX_LEVEL),
    'Brightness': enhance_level_to_args(MAX_LEVEL),
    'Sharpness': enhance_level_to_args(MAX_LEVEL),
    'ShearX': shear_level_to_args(MAX_LEVEL, replace_value),
    'TranslateX': translate_level_to_args(
        translate_const, MAX_LEVEL, replace_value
    ),
    'TranslateY': translate_level_to_args(
        translate_const, MAX_LEVEL, replace_value
    ),
    'Posterize': posterize_level_to_args(MAX_LEVEL),
    'ShearY': shear_level_to_args(MAX_LEVEL, replace_value),
}


class RandomAugment(object):

    def __init__(self, N=2, M=10, isPIL=False, augs=[]):
        self.N = N
        self.M = M
        self.isPIL = isPIL
        if augs:
            self.augs = augs
        else:
            self.augs = list(arg_dict.keys())

    def get_random_ops(self):
        sampled_ops = np.random.choice(self.augs, self.N)
        return [(op, 0.5, self.M) for op in sampled_ops]

    def __call__(self, img):
        if self.isPIL:
            img = np.array(img)
        ops = self.get_random_ops()
        for name, prob, level in ops:
            if np.random.random() > prob:
                continue
            args = arg_dict[name](level)
            img = func_dict[name](img, *args)
        return img


def build_transform(is_train, randaug=True, input_size=224, interpolation='bicubic'):
    if is_train:
        t = [
            RandomResizedCropAndInterpolation(
                input_size, scale=(0.5, 1.0), interpolation=transforms.InterpolationMode.BICUBIC),
            transforms.RandomHorizontalFlip(),
        ]
        if randaug:
            t.append(
                RandomAugment(
                    2, 7, isPIL=True,
                    augs=[
                        'Identity', 'AutoContrast', 'Equalize', 'Brightness', 'Sharpness',
                        'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Rotate',
                    ]))
        t += [
            transforms.ToTensor(),
            transforms.Normalize(mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
        ]
        t = transforms.Compose(t)
    else:
        t = transforms.Compose([
            transforms.Resize((input_size, input_size),
                              interpolation=transforms.InterpolationMode.BICUBIC),
            transforms.ToTensor(),
            transforms.Normalize(mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD)
        ])

    return t


def _urlretrieve(url: str, filename: str, chunk_size: int = 1024) -> None:
    with open(filename, "wb") as fh:
        with urllib.request.urlopen(
            urllib.request.Request(url, headers={"User-Agent": "vissl"})
        ) as response:
            with tqdm(total=response.length) as pbar:
                for chunk in iter(lambda: response.read(chunk_size), ""):
                    if not chunk:
                        break
                    pbar.update(chunk_size)
                    fh.write(chunk)