File size: 19,779 Bytes
fda92ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de9e1bb
 
 
 
 
 
fda92ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dee672b
 
 
 
 
 
 
 
fda92ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
651ed08
fda92ea
 
 
 
 
 
 
 
 
 
 
3d0e971
 
fda92ea
3d0e971
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fda92ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
651ed08
fda92ea
 
 
 
 
 
 
 
651ed08
fda92ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
import math
from typing import List, Optional
import json
import timm
import torch
import torchvision
from PIL import Image
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from torchvision import transforms
from transformers import LlamaTokenizer

from .configuration_minicpm import MiniCPMVConfig
from .modeling_minicpm import MiniCPMForCausalLM, MiniCPMPreTrainedModel
from .resampler import Resampler


class MiniCPMVPreTrainedModel(MiniCPMPreTrainedModel):
    config_class = MiniCPMVConfig


class MiniCPMV(MiniCPMVPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.llm = MiniCPMForCausalLM(config)
        self.vpm = self.init_vision_module()
        self.vision_dim = self.vpm.embed_dim
        self.embed_dim = self.llm.config.hidden_size
        self.resampler = self.init_resampler(self.embed_dim, self.vision_dim)
        self.transform = self.init_transform()

    def init_vision_module(self):
        model = timm.create_model(
            self.config.vision_encoder,
            pretrained=False,
            num_classes=0,
            dynamic_img_size=True,
            dynamic_img_pad=True
        )

        if isinstance(model, timm.models.VisionTransformer):
            if model.attn_pool is not None:
                model.attn_pool = torch.nn.Identity()

        if self.config.drop_vision_last_layer:
            model.blocks = model.blocks[:-1]

        return model

    def init_resampler(self, embed_dim, vision_dim):
        return Resampler(
            grid_size=int(math.sqrt(self.config.query_num)),
            embed_dim=embed_dim,
            num_heads=embed_dim // 128,
            kv_dim=vision_dim,
            adaptive=True
        )

    def init_transform(self):
        return transforms.Compose(
            [
                transforms.ToTensor(),
                transforms.Normalize(
                    mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD
                ),
            ]
        )

    def get_input_embeddings(self):
        return self.llm.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.llm.embed_tokens = value

    def get_vision_embedding(self, pixel_values):
        res = []
        dtype = self.vpm.pos_embed.data.dtype
        for pixel_value in pixel_values:
            H, W = pixel_value.shape[-2:]
            tgt_size = (
            math.ceil(H / self.vpm.patch_embed.patch_size[0]), math.ceil(W / self.vpm.patch_embed.patch_size[0]))
            vision_embedding = self.vpm.forward_features(pixel_value.unsqueeze(0).type(dtype))
            if hasattr(self.vpm, 'num_prefix_tokens') and self.vpm.num_prefix_tokens > 0:
                vision_embedding = vision_embedding[:, self.vpm.num_prefix_tokens:]
            res.append(self.resampler(vision_embedding, tgt_size))
        return torch.vstack(res)

    def get_vllm_embedding(self, data):
        if "vision_hidden_states" not in data:
            pixel_values_list = data["pixel_values"]
            vision_hidden_states = []
            for pixel_values in pixel_values_list:
                if len(pixel_values) > 0:
                    vision_hidden_states.append(self.get_vision_embedding(pixel_values))
                elif self.training:
                    dtype = self.vpm.pos_embed.data.dtype
                    device = self.vpm.pos_embed.data.device
                    dummy_image = torch.zeros(
                        (1, 3, 224, 224), device=device, dtype=dtype
                    )
                    vision_hidden_states.append(self.get_vision_embedding(dummy_image))
                else:
                    vision_hidden_states.append([])

        else:
            vision_hidden_states = data["vision_hidden_states"]

        vllm_embedding = (
            self.llm.model.embed_tokens(data["input_ids"]) * self.llm.config.scale_emb
        )
        vision_hidden_states = [
            i.type(vllm_embedding.dtype) if isinstance(i, torch.Tensor) else i
            for i in vision_hidden_states
        ]

        bs = len(data["input_ids"])
        for i in range(bs):
            cur_vs_hs = vision_hidden_states[i]
            if len(cur_vs_hs) > 0:
                cur_vllm_emb = vllm_embedding[i]
                cur_image_bound = data["image_bound"][i]
                if len(cur_image_bound) > 0:
                    image_indices = torch.stack(
                        [
                            torch.arange(r[0], r[1], dtype=torch.long)
                            for r in cur_image_bound
                        ]
                    ).to(vllm_embedding.device)

                    cur_vllm_emb.scatter_(
                        0,
                        image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
                        cur_vs_hs.view(-1, cur_vs_hs.shape[-1]),
                    )
                elif self.training:
                    cur_vllm_emb += cur_vs_hs[0].mean() * 0

        return vllm_embedding, vision_hidden_states

    def forward(self, data, **kwargs):
        vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
        position_ids = data["position_ids"]
        if position_ids.dtype != torch.int64:
            position_ids = position_ids.long()

        return self.llm(
            input_ids=None,
            position_ids=position_ids,
            inputs_embeds=vllm_embedding,
            **kwargs
        )

    def _convert_to_tensors(
        self, tokenizer, input_str, max_inp_length: Optional[int] = None
    ):
        if tokenizer.add_bos_token:
            input_ids = tokenizer.encode(input_str)
        else:
            input_ids = [tokenizer.bos_id] + tokenizer.encode(input_str)
        if max_inp_length is not None:
            input_ids = input_ids[:max_inp_length]
        input_ids = torch.tensor(input_ids, dtype=torch.int32)

        image_start_tokens = torch.where(input_ids == tokenizer.im_start_id)[0]
        # 跳过 im_start
        image_start_tokens += 1
        image_end_tokens = torch.where(input_ids == tokenizer.im_end_id)[0]
        valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))
        image_bound = torch.hstack(
            [
                image_start_tokens[:valid_image_nums].unsqueeze(-1),
                image_end_tokens[:valid_image_nums].unsqueeze(-1),
            ]
        )

        model_input = {}
        model_input["input_ids"] = input_ids.unsqueeze(0).to(self.device)
        model_input["image_bound"] = image_bound

        return model_input

    def _process_list(
        self, tokenizer, data_list: List[str], max_inp_length: Optional[int] = None
    ):
        pad_keys = ["input_ids"]
        input_tensors = []
        for data in data_list:
            input_tensors.append(
                self._convert_to_tensors(tokenizer, data, max_inp_length)
            )
        padded = {}
        for key in pad_keys:
            padded[key] = pad(input_tensors, key, padding_side="left").to(self.device)
        padded["image_bound"] = [i["image_bound"] for i in input_tensors]
        return padded

    def _decode(self, inputs_embeds, tokenizer, **kwargs):
        output = self.llm.generate(
            inputs_embeds=inputs_embeds,
            pad_token_id=0,
            eos_token_id=tokenizer.eos_token_id,
            **kwargs
        )
        return self._decode_text(output, tokenizer)

    def _decode_text(self, result_ids, tokenizer):
        result_text = []
        for result in result_ids:
            result = result[result != 0]
            if result[0] == tokenizer.bos_id:
                result = result[1:]
            if result[-1] == tokenizer.eos_id:
                result = result[:-1]
            result_text.append(tokenizer.decode(result).strip())
        return result_text

    def slice_image(self, image):
        return slice_image(
            image,
            self.config.max_slice_nums,
            self.config.scale_resolution,
            self.config.patch_size,
        )

    def get_slice_image_placeholder(self, image, tokenizer):
        image_placeholder = (
            tokenizer.im_start
            + tokenizer.unk_token * self.config.query_num
            + tokenizer.im_end
        )

        slice_images = []

        source_image, patches, best_grid = slice_image(
            image,
            self.config.max_slice_nums,
            self.config.scale_resolution,
            self.config.patch_size,
        )

        slice_images.append(source_image)
        final_placeholder = image_placeholder

        if len(patches) > 0:
            for i in range(len(patches)):
                for j in range(len(patches[0])):
                    slice_images.append(patches[i][j])

            final_placeholder += get_grid_placeholder(
                tokenizer, best_grid, self.config.query_num
            )

        return slice_images, final_placeholder

    def generate(
        self,
        data_list=None,
        img_list=None,
        tokenizer=None,
        max_inp_length: Optional[int] = None,
        vision_hidden_states=None,
        return_vision_hidden_states=False,
        **kwargs
    ):

        assert data_list is not None
        bs = len(data_list)
        if img_list == None:
            img_list = [[] for i in range(bs)]
        assert bs == len(img_list)

        model_inputs = self._process_list(tokenizer, data_list, max_inp_length)

        if vision_hidden_states is None:
            pixel_values = []
            for i in range(bs):
                img_inps = []
                for img in img_list[i]:
                    img_inps.append(self.transform(img).to(self.device))
                if img_inps:
                    pixel_values.append(img_inps)
                else:
                    pixel_values.append([])
            model_inputs["pixel_values"] = pixel_values
        else:
            model_inputs["vision_hidden_states"] = vision_hidden_states

        with torch.inference_mode():
            (
                model_inputs["inputs_embeds"],
                vision_hidden_states,
            ) = self.get_vllm_embedding(model_inputs)

            result = self._decode(model_inputs["inputs_embeds"], tokenizer, **kwargs)

        if return_vision_hidden_states:
            return result, vision_hidden_states

        return result

    def chat(
        self,
        image,
        msgs,
        context,
        tokenizer,
        vision_hidden_states=None,
        max_new_tokens=1024,
        sampling=True,
        max_inp_length=2048,
        **kwargs
    ):
        if isinstance(msgs, str):
            msgs = json.loads(msgs)
        # msgs to prompt
        prompt = ""
        for i, msg in enumerate(msgs):
            role = msg["role"]
            content = msg["content"]
            assert role in ["user", "assistant"]
            if i == 0:
                if image is None:
                    images = []
                else:
                    assert role == "user", "The role of first msg should be user"
                    if self.config.slice_mode:
                        images, final_placeholder = self.get_slice_image_placeholder(
                            image, tokenizer
                        )
                        content = final_placeholder + "\n" + content
                    else:
                        images = [image]
                        content = (
                            tokenizer.im_start
                            + tokenizer.unk_token * self.config.query_num
                            + tokenizer.im_end
                            + "\n"
                            + content
                        )
            prompt += "<用户>" if role == "user" else "<AI>"
            prompt += content
        prompt += "<AI>"
        final_input = prompt

        if sampling:
            generation_config = {
                "top_p": 0.8,
                "top_k": 100,
                "temperature": 0.7,
                "do_sample": True,
                "repetition_penalty": 1.05
            }
        else:
            generation_config = {
                "num_beams": 3,
                "repetition_penalty": 1.2,
            }

        generation_config.update(
            (k, kwargs[k]) for k in generation_config.keys() & kwargs.keys()
        )

        with torch.inference_mode():
            res, vision_hidden_states = self.generate(
                data_list=[final_input],
                max_inp_length=max_inp_length,
                img_list=[images],
                tokenizer=tokenizer,
                max_new_tokens=max_new_tokens,
                vision_hidden_states=vision_hidden_states,
                return_vision_hidden_states=True,
                **generation_config
            )
        answer = res[0]
        context = msgs.copy()
        context.append({"role": "assistant", "content": answer})

        return answer, context, generation_config


class LlamaTokenizerWrapper(LlamaTokenizer):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.im_start = "<image>"
        self.im_end = "</image>"
        self.ref_start = "<ref>"
        self.ref_end = "</ref>"
        self.box_start = "<box>"
        self.box_end = "</box>"
        self.quad_start = "<quad>"
        self.quad_end = "</quad>"
        self.point_start = "<point>"
        self.point_end = "</point>"
        self.slice_start = "<slice>"
        self.slice_end = "</slice>"

    @property
    def eos_id(self):
        return self.sp_model.eos_id()

    @property
    def bos_id(self):
        return self.sp_model.bos_id()

    @property
    def unk_id(self):
        return self.sp_model.unk_id()

    @property
    def im_start_id(self):
        return self._convert_token_to_id(self.im_start)

    @property
    def im_end_id(self):
        return self._convert_token_to_id(self.im_end)


def pad(orig_items, key, max_length=None, padding_value=0, padding_side="left"):
    items = []
    if isinstance(orig_items[0][key], list):
        assert isinstance(orig_items[0][key][0], torch.Tensor)
        for it in orig_items:
            for tr in it[key]:
                items.append({key: tr})
    else:
        assert isinstance(orig_items[0][key], torch.Tensor)
        items = orig_items

    batch_size = len(items)
    shape = items[0][key].shape
    dim = len(shape)
    assert dim <= 3
    if max_length is None:
        max_length = 0
    max_length = max(max_length, max(item[key].shape[-1] for item in items))
    min_length = min(item[key].shape[-1] for item in items)
    dtype = items[0][key].dtype

    if dim == 1:
        return torch.cat([item[key] for item in items], dim=0)
    elif dim == 2:
        if max_length == min_length:
            return torch.cat([item[key] for item in items], dim=0)
        tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
    else:
        tensor = (
            torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype)
            + padding_value
        )

    for i, item in enumerate(items):
        if dim == 2:
            if padding_side == "left":
                tensor[i, -len(item[key][0]) :] = item[key][0].clone()
            else:
                tensor[i, : len(item[key][0])] = item[key][0].clone()
        elif dim == 3:
            if padding_side == "left":
                tensor[i, -len(item[key][0]) :, :] = item[key][0].clone()
            else:
                tensor[i, : len(item[key][0]), :] = item[key][0].clone()

    return tensor


def slice_image(
    image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False
):
    original_size = image.size
    original_width, original_height = original_size
    log_ratio = math.log(original_width / original_height)
    ratio = original_width * original_height / (scale_resolution * scale_resolution)
    multiple = min(math.ceil(ratio), max_slice_nums)

    source_image = None
    best_grid = None
    patches = []

    if multiple <= 1 or never_split:
        # dont need to slice, upsample
        best_size = find_best_resize(
            original_size, scale_resolution, patch_size, allow_upscale=True
        )
        source_image = image.resize(best_size, Image.Resampling.BICUBIC)
    else:
        candidate_split_grids_nums = []
        for i in [multiple - 1, multiple, multiple + 1]:
            if i == 1 or i > max_slice_nums:
                continue
            candidate_split_grids_nums.append(i)

        # source image, down-sampling and ensure divided by patch_size
        best_resize = find_best_resize(original_size, scale_resolution, patch_size)
        source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
        candidate_grids = []

        # find best grid
        for split_grids_nums in candidate_split_grids_nums:
            m = 1
            while m <= split_grids_nums:
                if split_grids_nums % m == 0:
                    candidate_grids.append([m, split_grids_nums // m])
                m += 1

        best_grid = [1, 1]
        min_error = float("inf")
        for grid in candidate_grids:
            error = abs(log_ratio - math.log(grid[0] / grid[1]))
            if error < min_error:
                best_grid = grid
                min_error = error

        refine_size = get_refine_size(
            original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
        )

        refine_image = image.resize(refine_size, Image.Resampling.BICUBIC)
        patches = split_to_patches(refine_image, best_grid)

    return source_image, patches, best_grid


def ensure_divide(length, patch_size):
    return max(round(length / patch_size) * patch_size, patch_size)


def find_best_resize(original_size, scale_resolution, patch_size, allow_upscale=False):
    width, height = original_size
    if (width * height > scale_resolution * scale_resolution) or allow_upscale:
        r = width / height
        height = int(scale_resolution / math.sqrt(r))
        width = int(height * r)
    best_width = ensure_divide(width, patch_size)
    best_height = ensure_divide(height, patch_size)
    return (best_width, best_height)


def get_refine_size(
    original_size, grid, scale_resolution, patch_size, allow_upscale=False
):
    width, height = original_size
    grid_x, grid_y = grid

    refine_width = ensure_divide(width, grid_x)
    refine_height = ensure_divide(height, grid_y)

    grid_width = refine_width / grid_x
    grid_height = refine_height / grid_y

    best_grid_size = find_best_resize(
        (grid_width, grid_height),
        scale_resolution,
        patch_size,
        allow_upscale=allow_upscale,
    )

    refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)

    return refine_size


def split_to_patches(image, grid):
    patches = []
    width, height = image.size
    grid_x = int(width / grid[0])
    grid_y = int(height / grid[1])

    for i in range(0, height, grid_y):
        images = []
        for j in range(0, width, grid_x):
            box = (j, i, j + grid_x, i + grid_y)
            patch = image.crop(box)
            images.append(patch)
        patches.append(images)

    return patches


def get_grid_placeholder(tokenizer, grid, query_num):
    image_placeholder = (
        tokenizer.im_start + tokenizer.unk_token * query_num + tokenizer.im_end
    )

    cols = grid[0]
    rows = grid[1]
    slices = []
    for i in range(rows):
        lines = []
        for j in range(cols):
            lines.append(image_placeholder)
        slices.append("".join(lines))
    slice_placeholder = tokenizer.slice_start + "\n".join(slices) + tokenizer.slice_end
    return slice_placeholder