winglian commited on
Commit
ce312a0
1 Parent(s): 7ffbeb4

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +154 -0
README.md ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - Open-Orca/OpenOrca
4
+ - LDJnr/LessWrong-Amplify-Instruct
5
+ - LDJnr/Pure-Dove
6
+ - LDJnr/Verified-Camel
7
+ - PygmalionAI/PIPPA
8
+ - meta-math/MetaMathQA
9
+ - riddle_sense
10
+ language:
11
+ - en
12
+ library_name: transformers
13
+ pipeline_tag: text-generation
14
+ license: apache-2.0
15
+ ---
16
+
17
+ <p><h1>🐰🦌 Jackalope 7B 🐰🦌</h1></p>
18
+
19
+
20
+ ![Jackalope Logo](https://huggingface.co/openaccess-ai-collective/jackalope-7b/resolve/main/images/jackalope.jpg "Jackalope Logo")
21
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
22
+
23
+
24
+ # Jackalope 7B
25
+
26
+ We have used the [SlimOrca dataset](https://huggingface.co/datasets/Open-Orca/OpenOrca), PIPPA, and various other open datasets
27
+ to fine-tune on top of [Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1).
28
+
29
+ This dataset is our attempt to reproduce the dataset generated for Microsoft Research's [Orca Paper](https://arxiv.org/abs/2306.02707).
30
+ We use [OpenChat](https://huggingface.co/openchat) packing, trained with [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl).
31
+
32
+ This release highlights the efficiency of SlimOrca, while improving the ability of the model's multi-turn chat.
33
+
34
+ HF Leaderboard evals puts this model only slightly below the MistralOrca release, but can be considered a
35
+ reasonable tradeoff for a more general model that can handle multi-turn chat.
36
+
37
+ If you'd like to try the model now, we have it running on fast GPUs unquantized: https://huggingface.co/spaces/openaccess-ai-collective/jackalope-7b
38
+
39
+
40
+ Join the OpenAccess AI Collective Discord for more information about Axolotl trainer and other OAAIC models here:
41
+
42
+ https://discord.gg/5y8STgB3P3
43
+
44
+ Also join the AlignmentLab Discord for sneak-peak announcements:
45
+
46
+ https://AlignmentLab.ai
47
+
48
+
49
+
50
+ # Quantized Models
51
+
52
+ Quantized versions of this model are generously made available by [TheBloke](https://huggingface.co/TheBloke).
53
+
54
+ - AWQ: https://huggingface.co/TheBloke/Jackalope-7B-AWQ
55
+ - GPTQ: https://huggingface.co/TheBloke/Jackalope-7B-GPTQ
56
+ - GGUF: https://huggingface.co/TheBloke/Jackalope-7B-GGUF
57
+
58
+
59
+ # Prompt Template
60
+
61
+ We used [OpenAI's Chat Markup Language (ChatML)](https://github.com/openai/openai-python/blob/main/chatml.md) format, with `<|im_start|>` and `<|im_end|>` tokens added to support this.
62
+
63
+ This means that, e.g., in [oobabooga](https://github.com/oobabooga/text-generation-webui/) the "`MPT-Chat`" instruction template should work, as it also uses ChatML.
64
+
65
+ This formatting is also available via a pre-defined [Transformers chat template](https://huggingface.co/docs/transformers/main/chat_templating),
66
+ which means that lists of messages can be formatted for you with the `apply_chat_template()` method:
67
+
68
+ ```python
69
+ chat = [
70
+ {"role": "system", "content": "You are MistralOrca, a large language model trained by Alignment Lab AI. Write out your reasoning step-by-step to be sure you get the right answers!"}
71
+ {"role": "user", "content": "How are you?"},
72
+ {"role": "assistant", "content": "I am doing well!"},
73
+ {"role": "user", "content": "Please tell me about how mistral winds have attracted super-orcas."},
74
+ ]
75
+ tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
76
+ ```
77
+
78
+ which will yield:
79
+
80
+ ```
81
+ <|im_start|>system
82
+ You are JackalopeAI. Write out your reasoning step-by-step to be sure you get the right answers!
83
+ <|im_end|>
84
+ <|im_start|>user
85
+ How are you?<|im_end|>
86
+ <|im_start|>assistant
87
+ I am doing well!<|im_end|>
88
+ <|im_start|>user
89
+ Please tell me about the mythical creatures called jackalopes.<|im_end|>
90
+ <|im_start|>assistant
91
+ ```
92
+
93
+ If you use `tokenize=True` and `return_tensors="pt"` instead, then you will get a tokenized
94
+ and formatted conversation ready to pass to `model.generate()`.
95
+
96
+
97
+ # Evaluation
98
+
99
+ ## HuggingFace Leaderboard Performance
100
+
101
+ ![All benchmarks](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca/resolve/main/images/bench.png)
102
+
103
+
104
+ | Metric | Value |
105
+ |-----------------------|--|
106
+ | MMLU (5-shot) | 63.63 |
107
+ | ARC (25-shot) | 63.31 |
108
+ | HellaSwag (10-shot) | 83.29 |
109
+ | TruthfulQA (0-shot) | 49.99 |
110
+ | Avg. | 65.06 |
111
+
112
+ We use [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard.
113
+
114
+ # Dataset
115
+
116
+ We used a verified, curated, filtered selection of most of the GPT-4 augmented data from the OpenOrca dataset.
117
+ Additionally we include multi-turn chat from [PIPPA](https://huggingface.co/datasets/PygmalionAI/PIPPA), various datasets
118
+ by LDJ from Nous Research, MetaMathQA, and Chain-of-Thought augmented data from the train split of RiddleSense.
119
+
120
+
121
+ # Training
122
+
123
+ We trained with 8x A6000 GPUs for 96 hours, completing 4 epochs of full fine tuning on our dataset in one training run.
124
+ Commodity cost was ~$650.
125
+
126
+
127
+ # Citation
128
+
129
+ ```bibtex
130
+ @software{lian2023jackalope,
131
+ title = {Jackalope 7B: Mistral-7B Model Multi-Turn Chat tuned on Filtered OpenOrcaV1 GPT-4 Dataset},
132
+ author = {Wing Lian and Bleys Goodson and Guan Wang and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium"},
133
+ year = {2023},
134
+ publisher = {HuggingFace},
135
+ journal = {HuggingFace repository},
136
+ howpublished = {\url{openaccess-ai-collective/jackalope-7b},
137
+ }
138
+ @misc{mukherjee2023orca,
139
+ title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
140
+ author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
141
+ year={2023},
142
+ eprint={2306.02707},
143
+ archivePrefix={arXiv},
144
+ primaryClass={cs.CL}
145
+ }
146
+ @misc{longpre2023flan,
147
+ title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning},
148
+ author={Shayne Longpre and Le Hou and Tu Vu and Albert Webson and Hyung Won Chung and Yi Tay and Denny Zhou and Quoc V. Le and Barret Zoph and Jason Wei and Adam Roberts},
149
+ year={2023},
150
+ eprint={2301.13688},
151
+ archivePrefix={arXiv},
152
+ primaryClass={cs.AI}
153
+ }
154
+ ```