Bounding box detection
PyTorch
frcnn / processing_image.py
Ontocord.AI
Create processing_image.py
6e696e8
raw
history blame
6.01 kB
"""
coding=utf-8
Copyright 2018, Antonio Mendoza Hao Tan, Mohit Bansal
Adapted From Facebook Inc, Detectron2
Adapted from https://github.com/j-min
Copyright 2022, Ontocord LLC
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.import copy
"""
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from .utils import img_tensorize
class ResizeShortestEdge:
def __init__(self, short_edge_length, max_size=sys.maxsize):
"""
Args:
short_edge_length (list[min, max])
max_size (int): maximum allowed longest edge length.
"""
self.interp_method = "bilinear"
self.max_size = max_size
self.short_edge_length = short_edge_length
def __call__(self, imgs):
img_augs = []
for img in imgs:
h, w = img.shape[:2]
# later: provide list and randomly choose index for resize
size = np.random.randint(self.short_edge_length[0], self.short_edge_length[1] + 1)
if size == 0:
return img
scale = size * 1.0 / min(h, w)
if h < w:
newh, neww = size, scale * w
else:
newh, neww = scale * h, size
if max(newh, neww) > self.max_size:
scale = self.max_size * 1.0 / max(newh, neww)
newh = newh * scale
neww = neww * scale
neww = int(neww + 0.5)
newh = int(newh + 0.5)
if img.dtype == np.uint8:
pil_image = Image.fromarray(img)
pil_image = pil_image.resize((neww, newh), Image.BILINEAR)
img = np.asarray(pil_image)
else:
img = img.permute(2, 0, 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw
img = nn.functional.interpolate(
img, (newh, neww), mode=self.interp_method, align_corners=False
).squeeze(0)
img_augs.append(img)
return img_augs
class Preprocess (nn.Module):
def __init__(self, cfg):
super().__init__()
self.aug = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST)
self.input_format = cfg.INPUT.FORMAT
self.size_divisibility = cfg.SIZE_DIVISIBILITY
self.pad_value = cfg.PAD_VALUE
self.max_image_size = cfg.INPUT.MAX_SIZE_TEST
pixel_std = torch.tensor(cfg.MODEL.PIXEL_STD).view(len(cfg.MODEL.PIXEL_STD), 1, 1)
pixel_mean = torch.tensor(cfg.MODEL.PIXEL_MEAN).view(len(cfg.MODEL.PIXEL_STD), 1, 1)
self.register_buffer('pixel_std', pixel_std)
self.register_buffer('pixel_mean', pixel_mean)
self.normalizer = lambda x: (x - self.pixel_mean) / self.pixel_std
def pad(self, images):
max_size = tuple(max(s) for s in zip(*[img.shape for img in images]))
image_sizes = [im.shape[-2:] for im in images]
images = [
nn.functional.pad(
im,
[0, max_size[-1] - size[1], 0, max_size[-2] - size[0]],
value=self.pad_value,
)
for size, im in zip(image_sizes, images)
]
return torch.stack(images), torch.tensor(image_sizes)
def forward(self, images, single_image=False):
with torch.no_grad():
if not isinstance(images, list):
images = [images]
if single_image:
assert len(images) == 1
for i in range(len(images)):
if isinstance(images[i], np.ndarray):
images.insert(i, torch.tensor(images.pop(i)).to(self.pixel_std.device).float())
elif isinstance(images[i], torch.Tensor):
images.insert(i, images.pop(i).to(self.pixel_std.device).float())
elif not isinstance(images[i], torch.Tensor):
images.insert(
i,
torch.as_tensor(img_tensorize(images.pop(i), input_format=self.input_format))
.to(self.pixel_std.device)
.float(),
)
# resize smallest edge
raw_sizes = torch.tensor([im.shape[:2] for im in images])
images = self.aug(images)
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.pxiel_std.device) for i in images]
# now normalize before pad to avoid useless arithmetic
images = [self.normalizer(x) for x in images]
# now pad them to do the following operations
images, sizes = self.pad(images)
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
scales_yx = torch.true_divide(raw_sizes, sizes)
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def _scale_box(boxes, scale_yx):
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def _clip_box(tensor, box_size: Tuple[int, int]):
assert torch.isfinite(tensor).all(), "Box tensor contains infinite or NaN!"
h, w = box_size
tensor[:, 0].clamp_(min=0, max=w)
tensor[:, 1].clamp_(min=0, max=h)
tensor[:, 2].clamp_(min=0, max=w)
tensor[:, 3].clamp_(min=0, max=h)