Ontocord.AI
commited on
Commit
·
6e696e8
1
Parent(s):
31412c2
Create processing_image.py
Browse files- processing_image.py +157 -0
processing_image.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
coding=utf-8
|
3 |
+
Copyright 2018, Antonio Mendoza Hao Tan, Mohit Bansal
|
4 |
+
Adapted From Facebook Inc, Detectron2
|
5 |
+
|
6 |
+
Adapted from https://github.com/j-min
|
7 |
+
|
8 |
+
Copyright 2022, Ontocord LLC
|
9 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
you may not use this file except in compliance with the License.
|
11 |
+
You may obtain a copy of the License at
|
12 |
+
|
13 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
|
15 |
+
Unless required by applicable law or agreed to in writing, software
|
16 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
See the License for the specific language governing permissions and
|
19 |
+
limitations under the License.import copy
|
20 |
+
"""
|
21 |
+
import sys
|
22 |
+
from typing import Tuple
|
23 |
+
|
24 |
+
import numpy as np
|
25 |
+
import torch
|
26 |
+
from PIL import Image
|
27 |
+
from torch import nn
|
28 |
+
|
29 |
+
from .utils import img_tensorize
|
30 |
+
|
31 |
+
class ResizeShortestEdge:
|
32 |
+
def __init__(self, short_edge_length, max_size=sys.maxsize):
|
33 |
+
"""
|
34 |
+
Args:
|
35 |
+
short_edge_length (list[min, max])
|
36 |
+
max_size (int): maximum allowed longest edge length.
|
37 |
+
"""
|
38 |
+
self.interp_method = "bilinear"
|
39 |
+
self.max_size = max_size
|
40 |
+
self.short_edge_length = short_edge_length
|
41 |
+
|
42 |
+
def __call__(self, imgs):
|
43 |
+
img_augs = []
|
44 |
+
for img in imgs:
|
45 |
+
h, w = img.shape[:2]
|
46 |
+
# later: provide list and randomly choose index for resize
|
47 |
+
size = np.random.randint(self.short_edge_length[0], self.short_edge_length[1] + 1)
|
48 |
+
if size == 0:
|
49 |
+
return img
|
50 |
+
scale = size * 1.0 / min(h, w)
|
51 |
+
if h < w:
|
52 |
+
newh, neww = size, scale * w
|
53 |
+
else:
|
54 |
+
newh, neww = scale * h, size
|
55 |
+
if max(newh, neww) > self.max_size:
|
56 |
+
scale = self.max_size * 1.0 / max(newh, neww)
|
57 |
+
newh = newh * scale
|
58 |
+
neww = neww * scale
|
59 |
+
neww = int(neww + 0.5)
|
60 |
+
newh = int(newh + 0.5)
|
61 |
+
|
62 |
+
if img.dtype == np.uint8:
|
63 |
+
pil_image = Image.fromarray(img)
|
64 |
+
pil_image = pil_image.resize((neww, newh), Image.BILINEAR)
|
65 |
+
img = np.asarray(pil_image)
|
66 |
+
else:
|
67 |
+
img = img.permute(2, 0, 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw
|
68 |
+
img = nn.functional.interpolate(
|
69 |
+
img, (newh, neww), mode=self.interp_method, align_corners=False
|
70 |
+
).squeeze(0)
|
71 |
+
img_augs.append(img)
|
72 |
+
|
73 |
+
return img_augs
|
74 |
+
|
75 |
+
|
76 |
+
class Preprocess (nn.Module):
|
77 |
+
def __init__(self, cfg):
|
78 |
+
super().__init__()
|
79 |
+
self.aug = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST)
|
80 |
+
self.input_format = cfg.INPUT.FORMAT
|
81 |
+
self.size_divisibility = cfg.SIZE_DIVISIBILITY
|
82 |
+
self.pad_value = cfg.PAD_VALUE
|
83 |
+
self.max_image_size = cfg.INPUT.MAX_SIZE_TEST
|
84 |
+
|
85 |
+
pixel_std = torch.tensor(cfg.MODEL.PIXEL_STD).view(len(cfg.MODEL.PIXEL_STD), 1, 1)
|
86 |
+
pixel_mean = torch.tensor(cfg.MODEL.PIXEL_MEAN).view(len(cfg.MODEL.PIXEL_STD), 1, 1)
|
87 |
+
self.register_buffer('pixel_std', pixel_std)
|
88 |
+
self.register_buffer('pixel_mean', pixel_mean)
|
89 |
+
self.normalizer = lambda x: (x - self.pixel_mean) / self.pixel_std
|
90 |
+
|
91 |
+
def pad(self, images):
|
92 |
+
max_size = tuple(max(s) for s in zip(*[img.shape for img in images]))
|
93 |
+
image_sizes = [im.shape[-2:] for im in images]
|
94 |
+
images = [
|
95 |
+
nn.functional.pad(
|
96 |
+
im,
|
97 |
+
[0, max_size[-1] - size[1], 0, max_size[-2] - size[0]],
|
98 |
+
value=self.pad_value,
|
99 |
+
)
|
100 |
+
for size, im in zip(image_sizes, images)
|
101 |
+
]
|
102 |
+
|
103 |
+
return torch.stack(images), torch.tensor(image_sizes)
|
104 |
+
|
105 |
+
def forward(self, images, single_image=False):
|
106 |
+
with torch.no_grad():
|
107 |
+
if not isinstance(images, list):
|
108 |
+
images = [images]
|
109 |
+
if single_image:
|
110 |
+
assert len(images) == 1
|
111 |
+
for i in range(len(images)):
|
112 |
+
if isinstance(images[i], np.ndarray):
|
113 |
+
images.insert(i, torch.tensor(images.pop(i)).to(self.pixel_std.device).float())
|
114 |
+
elif isinstance(images[i], torch.Tensor):
|
115 |
+
images.insert(i, images.pop(i).to(self.pixel_std.device).float())
|
116 |
+
elif not isinstance(images[i], torch.Tensor):
|
117 |
+
images.insert(
|
118 |
+
i,
|
119 |
+
torch.as_tensor(img_tensorize(images.pop(i), input_format=self.input_format))
|
120 |
+
.to(self.pixel_std.device)
|
121 |
+
.float(),
|
122 |
+
)
|
123 |
+
# resize smallest edge
|
124 |
+
raw_sizes = torch.tensor([im.shape[:2] for im in images])
|
125 |
+
images = self.aug(images)
|
126 |
+
# transpose images and convert to torch tensors
|
127 |
+
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.pxiel_std.device) for i in images]
|
128 |
+
# now normalize before pad to avoid useless arithmetic
|
129 |
+
images = [self.normalizer(x) for x in images]
|
130 |
+
# now pad them to do the following operations
|
131 |
+
images, sizes = self.pad(images)
|
132 |
+
# Normalize
|
133 |
+
|
134 |
+
if self.size_divisibility > 0:
|
135 |
+
raise NotImplementedError()
|
136 |
+
# pad
|
137 |
+
scales_yx = torch.true_divide(raw_sizes, sizes)
|
138 |
+
if single_image:
|
139 |
+
return images[0], sizes[0], scales_yx[0]
|
140 |
+
else:
|
141 |
+
return images, sizes, scales_yx
|
142 |
+
|
143 |
+
|
144 |
+
def _scale_box(boxes, scale_yx):
|
145 |
+
boxes[:, 0::2] *= scale_yx[:, 1]
|
146 |
+
boxes[:, 1::2] *= scale_yx[:, 0]
|
147 |
+
return boxes
|
148 |
+
|
149 |
+
|
150 |
+
def _clip_box(tensor, box_size: Tuple[int, int]):
|
151 |
+
assert torch.isfinite(tensor).all(), "Box tensor contains infinite or NaN!"
|
152 |
+
h, w = box_size
|
153 |
+
tensor[:, 0].clamp_(min=0, max=w)
|
154 |
+
tensor[:, 1].clamp_(min=0, max=h)
|
155 |
+
tensor[:, 2].clamp_(min=0, max=w)
|
156 |
+
tensor[:, 3].clamp_(min=0, max=h)
|
157 |
+
|