onizukal's picture
End of training
4315188 verified
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: Karma_3Class_RMSprop_1-e5_10Epoch_Beit-base-patch16_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8448818098813027

Karma_3Class_RMSprop_1-e5_10Epoch_Beit-base-patch16_fold5

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4092
  • Accuracy: 0.8449

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.434 1.0 2468 0.4027 0.8307
0.321 2.0 4936 0.3800 0.8422
0.2658 3.0 7404 0.3919 0.8538
0.1883 4.0 9872 0.5137 0.8496
0.1083 5.0 12340 0.6774 0.8501
0.1819 6.0 14808 0.9184 0.8469
0.1208 7.0 17276 1.1502 0.8448
0.1339 8.0 19744 1.3133 0.8418
0.0217 9.0 22212 1.3895 0.8434
0.0057 10.0 24680 1.4092 0.8449

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1