metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: Boya1_Adamax_1-e4_20Epoch_Deit-tiny-patch16_fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.5611608353675075
Boya1_Adamax_1-e4_20Epoch_Deit-tiny-patch16_fold5
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 3.4928
- Accuracy: 0.5612
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.3998 | 1.0 | 924 | 1.5149 | 0.4893 |
1.3931 | 2.0 | 1848 | 1.3087 | 0.5424 |
1.0339 | 3.0 | 2772 | 1.2795 | 0.5598 |
0.6895 | 4.0 | 3696 | 1.2909 | 0.5772 |
0.5865 | 5.0 | 4620 | 1.4017 | 0.5644 |
0.6353 | 6.0 | 5544 | 1.5191 | 0.5606 |
0.4014 | 7.0 | 6468 | 1.6877 | 0.5644 |
0.2889 | 8.0 | 7392 | 1.9030 | 0.5601 |
0.064 | 9.0 | 8316 | 2.0982 | 0.5633 |
0.0342 | 10.0 | 9240 | 2.4199 | 0.5574 |
0.071 | 11.0 | 10164 | 2.6790 | 0.5555 |
0.0036 | 12.0 | 11088 | 2.8221 | 0.5571 |
0.0018 | 13.0 | 12012 | 3.0343 | 0.5609 |
0.0019 | 14.0 | 12936 | 3.1489 | 0.5566 |
0.0004 | 15.0 | 13860 | 3.2320 | 0.5579 |
0.0248 | 16.0 | 14784 | 3.2970 | 0.5595 |
0.0003 | 17.0 | 15708 | 3.3641 | 0.5625 |
0.0002 | 18.0 | 16632 | 3.4302 | 0.5606 |
0.0002 | 19.0 | 17556 | 3.4763 | 0.5620 |
0.0001 | 20.0 | 18480 | 3.4928 | 0.5612 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.1.0
- Datasets 2.19.0
- Tokenizers 0.19.1