onizukal's picture
End of training
19ac9d6 verified
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: Boya1_3Class_RMSprop_1-e5_20Epoch_Beit-base-patch16_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8232432432432433

Boya1_3Class_RMSprop_1-e5_20Epoch_Beit-base-patch16_fold2

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7644
  • Accuracy: 0.8232

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4974 1.0 923 0.5529 0.7873
0.4125 2.0 1846 0.4400 0.8268
0.2808 3.0 2769 0.5196 0.8368
0.1527 4.0 3692 0.5655 0.8330
0.1865 5.0 4615 0.8608 0.8173
0.0741 6.0 5538 1.0784 0.8203
0.0819 7.0 6461 1.3435 0.8214
0.0017 8.0 7384 1.5429 0.8286
0.1022 9.0 8307 1.5116 0.8186
0.0532 10.0 9230 1.6291 0.8216
0.062 11.0 10153 1.6075 0.8227
0.0034 12.0 11076 1.6033 0.8278
0.0602 13.0 11999 1.6450 0.83
0.0052 14.0 12922 1.7169 0.8241
0.0005 15.0 13845 1.7681 0.8241
0.0002 16.0 14768 1.7020 0.8308
0.0 17.0 15691 1.7773 0.8286
0.0465 18.0 16614 1.7601 0.8249
0.0 19.0 17537 1.7672 0.8276
0.0006 20.0 18460 1.7644 0.8232

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1